Monday, January 2, 2012

MMATech Develops Polyimide-based Hip Replacement Implant for Medical Industry

Due to constant increase in human life expectancy, more and more people require total hip replacement surgeries; a field generating billions of US$ per year. One of the major problems with current materials used for hip implants is the extremely high friction and wear created between the different articulating implant components. Thus, the big players in the field are constantly striving to find improved materials. The Johnson and Johnson unit DePuy Orthopaedics issued a global recall of two hip aid systems after finding that more people than expected suffered pain which required additional surgery.
The friction and wear may cause mechanical failure of the implant resulting in its breakage and dislocation. This friction and wear creates sub-micron particles which and may activate the inflammatory system leading to local inflammation. This could lead to more significant complications including loosening of the implant, fracture of the hip bone and dislocation of the implant which requires a revision surgery. In the case of metal implants metal ions can be absorbed by tissue or enter the bloodstream resulting in allergy development and kidney and/or nerve system effects. In rare cases it might cause carcinogenic and poisoning effects.
Resolving the described problems was the main goal of the scientists and engineers at MMATech, Naharyya Israel. MMATech Ltd., develops components made of a revolutionary material of the Polyimide family, MP1™, originally developed at NASA USA for the aviation and space industry.
The material, being highly thermosetic, combines unusual strength, self-lubrication, and excellent friction and wear durability together with resistance to fatigue, creep, impact and chemicals.
MMATech manufactures acetabular liners made of its novel MP1™ material. Pre clinical and clinical studies indicated that the liner characteristics prevent, almost totally, wear debris formation, and the debris formed did not penetrate the bloodstream nor caused inflammation (inert particles).
Pilot clinical studies were conducted in New Zealand, with excellent five (5) years follow-up clinical results. MMATech plans to initiate large scale clinical studies with strategic partners in the beginning of 2012. Following extensive mechanical, pre-clinical and clinical tests, MMATech was accredited in October 2011 to the CE Mark certification for its MP1™ acetabular liner. The CE certificate enables MMATech to market its liner throughout Europe.

Wednesday, December 21, 2011

Braskem Launches Sugarcane-based Polyethylene Packaging for Sun Care Product


The new bottles made from renewable raw material are already available at drug stores and supermarkets. The SUNDOWN® regular line of products, which uses groundbreaking technology for the sun care market, is now available at stores in more sustainable packaging. It is one of the few brands around the world to use sugarcane-based polyethylene in its packaging, which contains 60% green plastic and 40% recycled material, thus helping to avoid unnecessary disposal of solid waste. To find out whether the SUNDOWN® product is manufactured using this material, consumers must look for the "I'm Green" logo on the front and back of the packaging.
The green plastic developed by Braskem is produced from sugarcane ethanol, a 100% renewable raw material that is also used as fuel in flex cars. Using green resin not only prevents CO2 emissions but also removes CO2 from the atmosphere. For each ton of plastic produced, green plastic sequestrates 2.5 tons of CO2 released during sugarcane cultivation through photosynthesis. This is a significant gain compared to traditional plastic, whose production releases 2.1 tons of CO2.
During the 2011/2012 summer season, SUNDOWN® will avoid consuming around 100 tons of resin produced from petroleum a non-renewable source and avoid releasing the equivalent of about 630 tons of CO2 in the atmosphere. SUNDOWN® is the only brand in Brazil's sun care segment to use this technology. It teamed up with Braskem in 2008 and since then has been working on developing new packaging made of green plastic.
"SUNDOWN® is a brand that develops products for consumers to enjoy the right measure of sunshine. The sun is associated with joy, fun, outdoor activity and nature and hence addressing the issue of sustainability by developing packaging that reduces damage to the environment reflects all that our brand stands for", says SUNDOWN® Marketing Manager, Juliana Sztrajtman.
The alliance between Johnson & Johnson, which makes SUNDOWN®, and Braskem is the result of their common commitment to sustainability. The green plastic is produced at Triunfo's petrochemical plant located in the state of Rio Grande do Sul, with annual production capacity of 200 thousand tons.

50 Tons of Waste Plastic = 90-foot Thermoplastic Road Bridge

With support from the Welsh Assembly Government, Vertech Limited, a relatively new start-up company partnered with Dawyck Estates, Specialist Bridge designer Cass Hayward LLP, Cardiff University’s School of Engineering, Rutgers University’s AAMIPP Department and Axion International to put in place the first recycled thermoplastic road bridge in Europe. Spanning the River Tweed at Easter Dawyck in Peeblesshire, the 90-foot bridge was built using 50 tons of waste plastic in just 4 days by an outstanding team from Glendinning Groundworks Ltd and 10 Field Squadron (Air Support), Royal Engineers.


Being made from plastic, the bridge won’t rust, requires no painting or regular maintenance; and is 100% recyclable. Vertech will also be manufacturing sheet materials using the same technology for use by the European construction sector as a replacement for plywood, MDF and laminates. With this unique technology, Vertech hopes that Europe would be able to convert a large volume of plastic waste into high performance and sustainable building materials, making better use of their plastic waste and avoid sending it to landfill or shipping it to China.

Monday, December 19, 2011

FDA to Issue Final Decision to Ban BPA in Food Packaging Next Year


The FDA apparently will issue a final decision next Spring on an interest group's petition requesting a ban on the use of bisphenol A (BPA) in food packaging. This results from a settlement reached last week in Natural Resources Defense Council v. HHS, No. 11-cv-5801 (S.D.N.Y. 12/07/11).
FDA is agreeing to issue a final decision on or before March 31, 2012, settling a complaint by the NRDC that the agency unreasonably delayed a decision on its petition, which dates to 2008. In reality, FDA continued to gather data on the issues, and has been looking at taking what it has called reasonable steps to reduce exposure to BPA in certain aspects of the food supply. For example, the American Chemistry Council has supported restricting the use of BPA in infant feeding bottles and spill-proof cups used by infants.
NRDC didn't want to wait for the science, taking the usual pro-plaintiff, anti-industry position that all gaps in knowledge should be filled in with worst-case scenarios. Studies employing standardized toxicity tests have in fact supported the safety of current low levels of human exposure to BPA. (FDA has been consulting with other agencies, including the National Institutes of Health (and National Toxicology Program), Environmental Protection Agency, Consumer Product Safety Commission, and the Centers for Disease Control and Prevention.)
And the interest group doesn't seem to care about the tremendous public health benefits that such products have provided. Any wide-spread ban of the product or litigation accomplishing the same result, may risk the public safety more than enhance it. Epoxy resins derived from bisphenol A are used to manufacture protective polymer coatings for the inner surface of metal food and beverage containers. This critical technology protects the contents of these containers from aggressive food products, thereby assuring a safe, wholesome, and nutritious food supply. Compared to other coating technologies, coatings derived from epoxy resins provide superior adhesion to the metal surface, greater durability, and higher resistance to the wide range of chemistries found in foods and beverages. These attributes are essential to protect the packed food from microbiological contamination, which is a significant food safety issue.
Canning might be the single most important innovation in the preservation of food in history. More than 1500 food items are regularly packed in cans, making out-of-season foods globally accessible year-round. More than 90% of food and beverage cans use epoxy-based coatings because of their strength, adhesion, formability and resistance to chemical reactions in the food and drinks without affecting the taste or smell of the product. They protect the food from the container and from bacterial contamination. They give canned foods their long shelf-life.

Friday, December 16, 2011

Lux Research Predicts Bio-based Chemicals & Materials Industry to Reach 19.7 USD B in 2016


Buoyed by consumer preferences, government mandate and corporate commitments, bio-based chemicals and materials will more than double capacity to 9.2 million tons, says Lux Research.

The bio-based chemicals and materials industry, carefully nurtured from labs to factories, has reached a tipping point and capacity will double in market potential to $19.7 billion in 2016, as its global manufacturing capacity zooms 140%, according to a recent report by Lux Research.
The global capacity for 17 major bio-based materials doubled to 3.8 million tons this year, but over the next five years will climb to 9.2 million tons, bringing critical scale to an industry poised to revolutionize the chemicals market, said the report, titled, "Global Bio-based Chemical Capacity Springs to Scale."
"Several strong forces consumer preference, corporate commitment, and government mandates and support are driving development in this space." said Kalib Kersh, Lux Research Analyst and lead author of the report. "For an industry with the scale of plastics, polymers, and chemicals, no business issue is as big as that of capacity. For bio-based alternatives to compete with petroleum, they have to match billion-dollar businesses producing at megaton levels," he added.
Lux analysts tallied up the capacity of 151 identified global facilities and captured their intended operational dates, products and capacities, and added 87 additional facilities for which it made conservative estimates. Among Lux Research's other key findings:
  • Bioplastics steal the scene but will slow down. From 2006 to 2011, bioplastics have experienced explosive growth of 1,500% to a current aggregate capacity of 470,000 tons, and a 10.9% share of all bio-based materials. Expansion is expected to moderate, though their capacity will still grow 57% from 2011 to 2016.



  • Cellulose polymers and starch-based plastics dominant. Cellulose polymers and starch-derived materials still rule because they are durable, strong and easily biodegradable: They've been widely used in high-performance plastic coatings, buttons and yarns, and even early LEGO bricks. However, their share of total capacity will slide from 45% in 2011 to 21% in 2016.



  • Consolidation ahead. By 2016, there will be consolidation both within sectors of bio-based materials manufacturing, and regionally, as leaders buy up technologies and access to feedstock. Momentum derived from existing capacity ethanol from sugarcane ethanol being converted to ethylene and propylene, for instance will influence regional specialization.

  • Saturday, December 10, 2011

    Evonik's PMMA Solar Fresnel lens Finds Use in Large-scale Concentrating Photovoltaics


    Experts estimated the world's installed capacity for concentrating photovoltaics (CPV) at 23 megawatts in 2010. The market research company GTM Research expects annual demand to rise to more than a gigawatt by 2015. Gone are the days of small pilot plants. Forecasts in particular underline the increasing importance of CPV.
    But a major prerequisite for building the solar panels is a supply of the required high-quality lenses. "We supplied PLEXIGLAS® Solar Fresnel lens parquets for over 10 MW of electricity from concentrating photovoltaics in 2011 already," says Uwe Loffler, who is responsible for the Solar Market Segment at the Acrylic Polymers Business Line of Evonik Industries. "That proved we can produce lenses for multi-megawatt projects."
    PLEXIGLAS® is used for the primary lenses in the solar panels. These high-quality lens parquets can be supplied with an edge length in excess of one meter. Customers have confirmed the optical efficiency of over 87%. The key properties in this respect are high light transmission and the outstandingly accurate mold surface reproduction of the high-precision Fresnel structures. Added to this is the longevity of the material that retains its excellent transparency even in permanent use.
    Evonik Industries is a worldwide manufacturer of PMMA products sold under the PLEXIGLAS® trademark on the European, Asian, African and Australian continents and under the trademark ACRYLITE® in the Americas.

    Thursday, December 8, 2011

    Arizona Researchers to Widen Methods for Producing Bio-based Styrene


    Styrene is one of the major building-block chemicals used to make many of the rubbery polymers and plastic materials we use today. More than 6 billion tons of it is manufactured each year in the United States alone, most of which goes into producing insulating materials, automobile tires, footwear, medical devices and hundreds of other widely used products. The problem is that all styrene is currently derived from a dwindling resource petroleum and its production requires one of the most energy-intensive processes in the petrochemical manufacturing industry. More than three metric tons of steam is necessary to produce just one metric ton of styrene. That excessive energy consumption also produces significant amounts of carbon dioxide, contributing to the detrimental buildup of greenhouses gases in the atmosphere.

    At Arizona State University, David Nielsen and Rebekah McKenna are seeking ways to make styrene and other common petrochemicals using renewable resources. They want to produce materials that are more sustainable, require less energy to produce, and alleviate negative environmental impacts when they are manufactured. Nielsen is an assistant professor of Chemical Engineering in the School for Engineering of Matter, Transportation and Energy, one of ASU's Ira A. Fulton Schools of Engineering. McKenna is studying to earn a doctoral degree in chemical engineering. They're experimenting with engineering microorganisms to act as catalysts for making styrene from renewable resources in this case biological materials, like sugars from plants.

    The bacteria they have genetically engineered for that purpose has drawn attention from peers in their field. A report on their work was first published in the international science and engineering journal Metabolic Engineering, and then later appeared in Nature Chemical Biology as a featured "research highlight". This past summer, McKenna was one of only a handful of student researchers selected by the Society for Industrial Microbiology to give a presentation at its annual meeting. Her report, "Styrene Biosynthesis from Renewable Resources," earned the conference's Best Student Oral Presentation award. "What we've done is create a new metabolic pathway," Nielsen explains. "We've found the particular genes and enzymes required to achieve the necessary chemistry, and we have strung them together in a way that enables our engineered bacteria to function as a sort of biological catalyst. In this way the cells can perform all of the biochemical reactions required to convert sugars like glucose into styrene".
    He and McKenna are doing what he describes as building "microscopic microbial chemical factories," designed to synthesize the raw ingredients required to make products with characteristics identical to those that in the past have been derived only from petroleum. If that is achieved, it could be possible for these chemicals produced from renewable materials to "plug directly into existing infrastructure, and be ready to use in current manufacturing systems that provide many of the products we use every day," Nielsen says.

    The next leap a particularly challenging one involves further improving the bacteria and scaling up the process to where styrene yields can be produced from renewable resources in as economically viable a way as styrene made from petroleum. Nielsen sees potential for his and McKenna's research to contribute to engineering efforts to develop other commonly used chemicals, fuels, and materials from renewable resources that would "create whole new markets for renewable biochemicals and biopolymers". At the very least, "we hope to be able to develop viable renewable alternatives for the bio-plastics industry," he says. "From there, we might be able to begin making all sorts of new products from renewable, biological materials," including new kinds of fuels.

    Today's KNOWLEDGE Share : Safety Meets Performance: Discover Microtex Composites's Flame Retardant Epoxy Prepregs

    Today's KNOWLEDGE Share Safety Meets Performance: Discover Microtex Composites's Flame Retardant Epoxy Prepregs 🔥 In industries wh...