Posts

Showing posts from December, 2011

Braskem Launches Sugarcane-based Polyethylene Packaging for Sun Care Product

The new bottles made from renewable raw material are already available at drug stores and supermarkets. The SUNDOWN® regular line of products, which uses groundbreaking technology for the sun care market, is now available at stores in more sustainable packaging. It is one of the few brands around the world to use sugarcane-based polyethylene in its packaging, which contains 60% green plastic and 40% recycled material, thus helping to avoid unnecessary disposal of solid waste. To find out whether the SUNDOWN® product is manufactured using this material, consumers must look for the "I'm Green" logo on the front and back of the packaging. The green plastic developed by Braskem is produced from sugarcane ethanol, a 100% renewable raw material that is also used as fuel in flex cars. Using green resin not only prevents CO 2  emissions but also removes CO 2  from the atmosphere. For each ton of plastic produced, green plastic sequestrates 2.5 tons of CO 2  released during sugar

50 Tons of Waste Plastic = 90-foot Thermoplastic Road Bridge

With support from the Welsh Assembly Government, Vertech Limited, a relatively new start-up company partnered with Dawyck Estates, Specialist Bridge designer Cass Hayward LLP, Cardiff University’s School of Engineering, Rutgers University’s AAMIPP Department and Axion International to put in place the first recycled thermoplastic road bridge in Europe. Spanning the River Tweed at Easter Dawyck in Peeblesshire, the 90-foot bridge was built using 50 tons of waste plastic in just 4 days by an outstanding team from Glendinning Groundworks Ltd and 10 Field Squadron (Air Support), Royal Engineers. Being made from plastic, the bridge won’t rust, requires no painting or regular maintenance; and is 100% recyclable. Vertech will also be manufacturing sheet materials using the same technology for use by the European construction sector as a replacement for plywood, MDF and laminates. With this unique technology, Vertech hopes that Europe would be able to convert a large volume of plastic waste

FDA to Issue Final Decision to Ban BPA in Food Packaging Next Year

The FDA apparently will issue a final decision next Spring on an interest group's petition requesting a ban on the use of bisphenol A (BPA) in food packaging. This results from a settlement reached last week in Natural Resources Defense Council v. HHS, No. 11-cv-5801 (S.D.N.Y. 12/07/11). FDA is agreeing to issue a final decision on or before March 31, 2012, settling a complaint by the NRDC that the agency unreasonably delayed a decision on its petition, which dates to 2008. In reality, FDA continued to gather data on the issues, and has been looking at taking what it has called reasonable steps to reduce exposure to BPA in certain aspects of the food supply. For example, the American Chemistry Council has supported restricting the use of BPA in infant feeding bottles and spill-proof cups used by infants. NRDC didn't want to wait for the science, taking the usual pro-plaintiff, anti-industry position that all gaps in knowledge should be filled in with worst-case scenarios. Stud

Lux Research Predicts Bio-based Chemicals & Materials Industry to Reach 19.7 USD B in 2016

Buoyed by consumer preferences, government mandate and corporate commitments, bio-based chemicals and materials will more than double capacity to 9.2 million tons, says Lux Research. The bio-based chemicals and materials industry, carefully nurtured from labs to factories, has reached a tipping point and capacity will double in market potential to $19.7 billion in 2016, as its global manufacturing capacity zooms 140%, according to a recent report by Lux Research. The global capacity for 17 major bio-based materials doubled to 3.8 million tons this year, but over the next five years will climb to 9.2 million tons, bringing critical scale to an industry poised to revolutionize the chemicals market, said the report, titled, "Global Bio-based Chemical Capacity Springs to Scale." "Several strong forces consumer preference, corporate commitment, and government mandates and support are driving development in this space." said Kalib Kersh, Lux Research Analyst and lead au

Evonik's PMMA Solar Fresnel lens Finds Use in Large-scale Concentrating Photovoltaics

Experts estimated the world's installed capacity for concentrating photovoltaics (CPV) at 23 megawatts in 2010. The market research company GTM Research expects annual demand to rise to more than a gigawatt by 2015. Gone are the days of small pilot plants. Forecasts in particular underline the increasing importance of CPV. But a major prerequisite for building the solar panels is a supply of the required high-quality lenses. "We supplied PLEXIGLAS® Solar Fresnel lens parquets for over 10 MW of electricity from concentrating photovoltaics in 2011 already," says Uwe Loffler, who is responsible for the Solar Market Segment at the Acrylic Polymers Business Line of Evonik Industries. "That proved we can produce lenses for multi-megawatt projects." PLEXIGLAS® is used for the primary lenses in the solar panels. These high-quality lens parquets can be supplied with an edge length in excess of one meter. Customers have confirmed the optical efficiency of over 87%. The k

Arizona Researchers to Widen Methods for Producing Bio-based Styrene

Styrene is one of the major building-block chemicals used to make many of the rubbery polymers and plastic materials we use today. More than 6 billion tons of it is manufactured each year in the United States alone, most of which goes into producing insulating materials, automobile tires, footwear, medical devices and hundreds of other widely used products. The problem is that all styrene is currently derived from a dwindling resource petroleum and its production requires one of the most energy-intensive processes in the petrochemical manufacturing industry. More than three metric tons of steam is necessary to produce just one metric ton of styrene. That excessive energy consumption also produces significant amounts of carbon dioxide, contributing to the detrimental buildup of greenhouses gases in the atmosphere. At Arizona State University, David Nielsen and Rebekah McKenna are seeking ways to make styrene and other common petrochemicals using renewable resources. They want to produ

Molecular Solar's Organic Photovoltaics Used for Charging Electronic Device Shines at Lord Stafford Awards

Molecular Solar is pioneering ultra-thin, flexible solar panels that can be used in portable chargers for mobile phones and other handheld devices, allowing devices to be recharged without needing to be connected to a mains power supply. As well as being a convenient way to charge electronic equipment, the technology will also help to reduce an individual's carbon footprint. The Lord Stafford Awards showcase collaboration between business and academia in the Midlands and Molecular Solar was recognised for its very successful partnership with Warwick Ventures, the University of Warwick's technology commercialisation company. Warwick Ventures helped set the company up in 2008 and has been instrumental in securing funding to enable Molecular Solar to translate the research done in the University's Department of Chemistry into marketable products. Most recently, Molecular Solar announced that its solar cells, which are made from organic photovoltaic materials, can now produce

PolyOne Utilizes Sanitized's Antimicrobial Solutions to Produce Medical Device for Healthcare Applications

PolyOne Corporation, a premier global provider of specialized polymer materials, services and solutions, announced an alliance with Sanitized AG, one of the leading producers of antimicrobials with over 50 years of experience, to provide innovative, customizable polymer solutions for specialized healthcare and medical device applications. PolyOne will utilize Sanitized® MedX antimicrobials in select formulations of WithStand™ Antimicrobial Solutions, which consist of active ingredients developed using proprietary technology that helps to inhibit the growth of bacteria, viruses and fungi on plastic surfaces. "PolyOne continues to align with leading global and innovative companies that help us better serve our customers," said Craig M. Nikrant, Senior Vice President and President, Global Specialty Engineered Materials, PolyOne Corporation. "This alliance gives Sanitized the benefit of PolyOne's expertise in medical polymer formulation and our penetration in the health

Sequana Selects Evonik's PEEK to Design its Pump Implant for Medical Applications

Image
The newly-developed ALFAPump™ System from Sequana Medical Switzerland helps patients suffering from excessive fluid in their abdomen: the battery-operated pump implant is based on the  PEEK  polymer VESTAKEEP® from Evonik Industries and has received CE approval. It pumps the excessive fluid from the abdominal cavity into the bladder, from which it can be excreted by the patient in the natural manner. Up to now, the water has had to be drained using painful paracentesis during regular doctor's appointments. Patients with liver disorders, congestive heart failure and certain types of cancer are particularly affected by ascites. The new system consists of a subcutaneously implanted pump and a catheter system: one catheter connects the abdomen to the pump, while the second connects the pump to the bladder. The new technology is made possible thanks to the use of VESTAKEEP®  PEEK,  a polyether ether ketone which is particularly characterized by its biocompatibility and biostability.

Teijin to Open CFRTP Pilot Plant for Producing Composites from Carbon Fiber for Japan's Automotive Industry

Teijin Limited has announced that it will establish the world's first pilot plant for fully integrated production of carbon fiber reinforced thermoplastic (CFRTP) components from carbon fiber on the premises of its Matsuyama Factory in Ehime Prefecture, Japan. The new plant will feature Teijin's unprecedented mass production technology for CFRTP components, which significantly reduces cycle times required for molding composite products to under a minute, enabling rapid production of various prototypes and performance evaluation tests. Construction of the new plant will begin shortly, with operations expected to commence in mid 2012. The new plant will enable Teijin to further accelerate its commercialization of CFRTP components for mass-produced automobiles and other industrial uses. Capital expenditure for the establishment of the pilot plant will total over two billion yen. Teijin's proprietary mass production technology for CFRTP enables the integrated production of ca