Posts

Showing posts from August, 2015

Iowa State University to Start Biopolymer Processing Plant Worth USD 5.3 Mn

 Eric Cochran led the way, counterclockwise, from one 500-gallon industrial tank to another and then another. By the time he got to the 1,300-gallon holding tank at the end he had explained how Iowa State University engineers are producing bio-polymers from soybean oil. And he was showing how, with support from an industrial partner, they’re about to ramp up bio-polymer production to the pilot-plant scale. The research and development at that scale is made possible by a new $5. 3 million Bio-Polymer Processing Facility located at Iowa State’s BioCentury Research Farm just west of Ames. The facility was built by Argo Genesis Chemical LLC, a sister company to Seneca Petroleum Co. Inc., of Crestwood, Illinois. The facility was turned over to Iowa State University on July 31. It will be formally dedicated on Aug. 26. The target date to begin production is Sept. 1. The huge tanks, the steel frame and all the tubes, pipes, hoses and wires connecting everything are a long way from the r

TerraVerdae Marks a Significant Milestone in Biobased PHA Production

TerraVerdae BioWorks Inc, an industrial biotechnology company developing advanced bioplastics and performance biomaterials from environmentally sustainable sources, announced that it has reached a major milestone—creation of its proprietary technology at a commercial scale. It has completed the scale-up optimization of its process to produce biodegradable PHA bioplastics from waste-derived methanol.  Funded by a major grant from Alberta Innovates Bio Solutions, TerraVerdae’s process uses “green” methanol from, forestry, municipal, agricultural or industrial waste sources, instead of petroleum or sugar-based sources. The bioprocess produces polyhydroxyalkanoate (PHA), a biobased and biodegradable bioplastic that is the starting material for a range of advanced biomaterials utilized in a variety of applications and markets.  “Our C1 based bioprocess represents a paradigm shift in economics and sustainability compared to traditional food or sugar-based bioprocesses,” said William Bardosh

Polymer Failure & Defects: Case-Histories of Problem Solving

This uniquely practical and industry’s UN-RIVALED course, to be offered in Atlanta, GA, USA, SEPT 22-24, 2015, “Polymer Failure & Defects: Problem Solving Case-Histories” has been attended by 500+ participants with representation from premier global companies. A highlight of the course is the presentation of 50+ Case-Histories of $MM business impact via skilled investigation of problems; solutions backed by PATENTS, PUBLICATIONS in prestigious journals & documented COMMERCIAL VALUE. There will be a major presentation on “How to Identify Innovation Opportunities During Routine Technical Operations”.  EXAMPLE #1: During occasional longer breaks, the extruder froze resulting in lengthy tear-downs & cleaning, thus adversely affecting the productivity. "Melt-Polycondensation" was established as the root-cause. Rather than changing the “near Impossible” manufacturing process for the plastic resin, a change in lubricant system with an unexpected catalytic effect, solved

MHG Announces Large Scale PHA Production Using 1st Commercial Scale Fermenter

MHG’s Chief Executive Officer, Paul A. Pereira announced the company has become the world’s largest producer of PHA with the startup of their first commercial scale fermenter. This event, along with an advanced technology platform, continues to place MHG at the forefront of the bioplastics industry.  This new fermentation vessel places MHG in an ideal position to meet the product delivery needs of their manufacturing customers worldwide. MHG has been working over the last couple years to ramp up the Bainbridge facility and in 2013, they brought in a world-class engineering and construction group to design and build out the plant. This expansion included the ordering and installation of custom equipment that will allow MHG to produce even greater quantities of PHA in the near future.  “Every single person, whether they are inland or on the coast has been affected in some way by plastic debris,” remarked Pereira. “The plastic we have seen and touched will be there for several generation

General Motors uses advanced composites from CSP in its 2016 Chevrolet Corvette

“Through a joint continuous improvement effort, Chevrolet and CSP have significantly reduced the density of the Corvette body panels – from 1.9 specific gravity for the 2013 model year, to 1.6 specific gravity for the 2014 model year to 1.2 for the 2016 model year,” said Christopher Basela, Lead Engineer for Corvette Body Composites.  The mass savings afforded by TCA Ultra Lite is accomplished through the use of a CSP-patented technology that uses treated glass bubbles to replace some of the calciumc carbonate filler, resulting in a lighter density material. On the C7, a total of 21 body panel assemblies, including doors, decklids, quarter panels and fenders, are molded from TCA Ultra Lite.  When combined with CSP’s patented vacuum and bonding manufacturing processes, TCA Ultra Lite offers a premium Class A finish with paint and gloss qualities comparable to metals, including aluminum. The material is able to withstand the E-coat process, and passes all OEM paint tests. It also offer