OCSiAl’s Graphene Nanotubes Replace Ammonium Salts & Carbon Black in PU System
Graphene nanotubes have demonstrated their ability to impart permanent and homogeneous anti-static properties to polyurethane (PU) materials, overcoming previous difficulties with nanotube dispersion in PU systems. The recently developed nanotube-based concentrate TUBALL MATRIX 202 has already built up a solid track record in applications such as industrial rollers and castors, PU shoes, printing rollers and cleaning pigs.
OCSiAl’s TUBALL graphene nanotubes are rapidly gaining ground in customer-oriented applications with high-performance requirements. One remarkable example is PU discs in cleaning pigs for industrial pipelines. To avoid explosions and fires while also preventing static noise and improving diagnostic accuracy, manufacturers of cleaning pigs are replacing ammonium salts as an anti-static agent with TUBALL MATRIX 202. In addition to a permanent and stable resistivity level of 10^7–10^5 Ω·cm, the preliminary results have shown a 30% reduction in the rate of equipment failure.
The TUBALL MATRIX 202 concentrate carrier is aplasticizer based on fatty carboxylic acid ester derivatives.
To obtain a resistivity level of 10^9–10^5 Ω·cm, the working dosage range of graphene nanotubes is 100 times less than the working dosage of ammonium salts, 500 times less than that of carbon black, and 1000 times less than that of conductive mica.
In comparison with ammonium salts, graphene nanotubes enable a wider range of resistivity levels that are totally independent of humidity and temperature conditions, and these nanotubes’ superiority over carbon black is rooted in their easy dispersion and the preserved mechanical properties of the system.
Source: OCSiAl
TUBALL MATRIX 202 - Concentrate of High-quality TUBALL™ SW CNTs
OCSiAl’s TUBALL graphene nanotubes are rapidly gaining ground in customer-oriented applications with high-performance requirements. One remarkable example is PU discs in cleaning pigs for industrial pipelines. To avoid explosions and fires while also preventing static noise and improving diagnostic accuracy, manufacturers of cleaning pigs are replacing ammonium salts as an anti-static agent with TUBALL MATRIX 202. In addition to a permanent and stable resistivity level of 10^7–10^5 Ω·cm, the preliminary results have shown a 30% reduction in the rate of equipment failure.
Applications of TUBALL MATRIX 202
- Another specific application of TUBALL MATRIX 202 is anti-static shoes, where the PU elastomer material used in the outsole and midsole allows the shoes to be used in various static-sensitive facilities in the chemistry, oil and gas, electronics and mining industries.
- These nanotubes have also been well received by industrial roller manufacturers, as PU printing rollers can now be produced with a permanent volume resistivity level of 10^8–10^6 Ω·cm without dust formation at the facility and while preserving the essential mechanical performance characteristics such as abrasion resistance and hardness.
- TUBALL MATRIX 202 is also gaining ground in rollers and castors used in the mining industry, where anti-static properties are critical for safety reasons.
The TUBALL MATRIX 202 concentrate carrier is a
To obtain a resistivity level of 10^9–10^5 Ω·cm, the working dosage range of graphene nanotubes is 100 times less than the working dosage of ammonium salts, 500 times less than that of carbon black, and 1000 times less than that of conductive mica.
In comparison with ammonium salts, graphene nanotubes enable a wider range of resistivity levels that are totally independent of humidity and temperature conditions, and these nanotubes’ superiority over carbon black is rooted in their easy dispersion and the preserved mechanical properties of the system.
Source: OCSiAl
Comments
Post a Comment