Posts

S+S Sorting Systems Enable High-quality Plastics from Waste Electrical Equipment

All over Europe, electrical and electronic scrap is the waste stream showing the highest growth rates. Since electronic equipment contains the most varied kinds of materials, the recycling of such waste involves high demands with respect to separation and sorting processes. The German plant manufacturer MeWa builds state-of-the-art recycling plants for large international waste management companies. In the United Kingdom MeWa realised a plant where old refrigerators, computers, vacuum cleaners, Hi-Fi systems, and other kinds of electrical waste are processed on two separate lines. For the recycling of high-quality plastics such as ABS ( acrylonitrile butadiene styrene ) or PC ( polycarbonate ) and of printed circuit boards MeWa uses three VARISORT N sorting systems made by S+S. "The decision to use E-Schrott Elektronic Waste S+S systems was based on the high output quality of these VARISORT systems. Only absolutely pure fractions can be sold at a good price in today&

Fraunhofer's Plastics Laser Welding Machine Helps Achieve Invisible Weld Seams

At this year's plastics trade show in Düsseldorf (October 27 to November 3, 2010) the Fraunhofer ILT is presenting the TransTWIST laser-based plastics welding machine at the Fraunhofer-Gesellschaft stand (E91) in Hall 3. In live demonstrations the researchers will show how two transparent joining partners made of plastic can be lap-welded using laser radiation. In conventional laser welding a suitable radiation absorber is normally applied to the underlying joining partner. This is time consuming and costly. Furthermore, the appearance of the component or weld is affected by the color of the radiation absorber. In order to be able to weld transparent plastics without any seam marks, the researchers at the Fraunhofer ILT have developed a laser machine for welding plastics. In a lap joint configuration transparent polymers are welded without the addition of infrared absorbers. This eliminates the need for elaborate pretreatment, saving process time and costs, and represe

Deep-Freeze Packaging made from Renewable Resources

The German company Dettmer Verpackunger, i.e. DeLo, which is specialized in flexible packaging systems, has designed an innovative deep-freeze packaging for frozen potato products that is entirely made from a copolyester material stemming from renewable resources. The company has in fact chosen the Bio-Flex™ F2110 grade from the German material producer FKuR to produce the new packaging. This material is a blend based on poly(acid lactic) and does not contain any starch or starch derivatives. It provides the high mechanical properties required for deep-frozen applications such as high impact resistance and dart drop strength at low temperature. Furthermore it complies with the EN 13432 standard. This new deep-freeze bio-based packaging has been chosen by the American company Mc Cain for its “Bio Harvest” products line.

MIT Study Recognises Importance of Natural Gas as Bridge to Future

The Massachusetts Institute of Technology has completed a two year study which examined the scale of U.S. natural gas reserves and the potential of this fuel to reduce greenhouse-gas (GHG) emissions. Undertaken by the MIT Energy Initiative (MITEI), the study concluded that natural gas will play a leading role in reducing GHG emissions over the next several decades. The findings, summarized in an 83-page report , were presented to lawmakers and senior administration officials in Washington. “Much has been said about natural gas as a bridge to a low-carbon future, with little underlying analysis to back up this contention. The analysis in this study provides the confirmation — natural gas truly is a bridge to a low-carbon future,” said MITEI Director Ernest J. Moniz in introducing the report. The study found that there are significant global supplies of conventional gas. How much of this gas gets produced and used, and the extent of its impact on greenhouse gas reductions

Ceramic/Plastic Component for LED

The German ceramics materials specialist OxiMaTec GmbH has been the winner of the 2009 EuroMold Gold Award fort its innovative ceramic/plastic composite-based components that have been designed for automotive light-emitting diode (LED) headlamp housing. These components, which are produced by Graveurbetrieb Leonhardt, a specialist in ceramics pressing, sintering, machining and injection molding, have a hybrid structure based on a high-heat ceramic functional part overmolded with a thermoplastic material. As a result the new headlamp housing exhibit high temperature resistance and allows eliminating wear problems. The ceramic takes care of heat dissipation while the thermoplastic provides elasticity and impact resistance.

Ford Formulates Soy-based Formula to Improve Car Parts Made of Rubber

Ford Motor Company's biomaterial researchers have engineered a patent-pending formula to use renewable soy oil to improve rubber car parts and make them more environmentally friendly. By using renewable soy oil as a 25 percent replacement for petroleum oil, Ford researchers more than doubled rubber's stretchability and reduced its environmental impact. Soy-based rubber parts such as radiator deflector shields, air baffles, cupholder inserts and floor mats are under consideration for future Ford vehicle programs. "Ford is focused on finding innovative ways to make our vehicles more eco-friendly," said Cynthia Flanigan, Ford technical leader in elastomeric polymers. "Soy-based rubber has win-win potential as it provides superior stretchability and serves as a renewable resource that helps reduce carbon dioxide emissions from raw materials." Beyond soy oil The scope of Ford's recent rubber research, which was funded in part by grants from

Bio Polymers Market

The total sunk-in capacity for biopolymers in 2009 was around 500 million lbs. These include polylactide acid [PLA] (NatureWorks, Galactic, Hycail BV); polyhydroxyalkanoates such as PHAs, PHB, and PHBH (Biomer, Procter&Gamble); polymers based on bio-based PDO (DuPont); cellulose polymers (Innovia Films) 1 ; epoxy polymers from bio-glycerol; and starch polymers and blends (AkzoNobel [National Starch Chemical] and several other players). NatureWorks (Cargill Dow) is the major commercial player with a PLA capacity of 280 million lbs 2 ; and Novamont is the major producer of starch polymers and blends, with a capacity of 120 million lbs. 3 The total capacity of biopolymers is expected to reach 1.3 billion lbs, if Braskem's 400 million lbs/year of bio-polyethylene production and Braskem's/Nova Zymes's 400 million lbs/year 4 of bio-polypropylene production materializes in Brazil. At these levels, the biopolymer's share of the total global production o