Friday, November 18, 2011

Biggest Plastics Recycling Initiative for London 2012 Olympic Games

As part of its commitment to help London 2012 stage a sustainable Olympic Games, The Coca-Cola Company is placing 260 new recycling bins in locations around the city centre. These bins will encourage people to recycle the 11,000 tons of waste produced in the capital every day - before, during and after the Games. Working in partnership with WRAP, Coca-Cola has already established 44 Recycle Zones across the country, and has plans to almost double this number by the time the Games commence.


The process that follows the collection of waste includes the following steps: 
1. The bottle gets picked up, squashed as small as possible and taken to a reprocessing plant
2. There, the bottle is spun in a special machine to shake off dirt and a magnet removes any metal
3. All the bottles are sorted by color and type
4. The sorted bottles are ground into flakes, and the flakes are then sieved through to get rid of any discolored or contaminated bits
5. These tiny pieces of plastic can then be made into a new bottle, ready for use.

Tuesday, November 8, 2011

Berkeley Lab research sparks record-breaking solar cell performances


Theoretical research by scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has led to record-breaking sunlight-to-electricity conversion efficiencies in solar cells. The researchers showed that, contrary to conventional scientific wisdom, the key to boosting solar cell efficiency is not absorbing more photons but emitting more photons.
"A great solar cell also needs to be a great light emitting diode," says Eli Yablonovitch, the Berkeley Lab electrical engineer who led this research. "This is counter-intuitive. Why should a solar cell be emitting photons?  What we demonstrated is that the better a solar cell is at emitting photons, the higher its voltage and the greater the efficiency it can produce."
Yablonovitch is the corresponding author of a paper describing this work titled "Intense Internal and External Fluorescence as Solar Cells Approach the Shockley-Queisser Efficiency Limit." Co-authoring this paper with Yablonovitch were Owen Miller of Berkeley Lab, and Sarah Kurtz, at the National Renewable Energy Laboratory (NREL).
In their paper, Yablonovitch, Miller, and Kurtz describe how external fluorescence is the key to approaching the theoretical maximum efficiency at which a solar cell can convert sunlight into electricity. This theoretical efficiency, called the Shockley-Queisser efficiency limit (SQ Limit), measures approximately 33.5% for a single p-n junction solar cell. This means that if a solar cell collects 1,000 W per square meter of solar energy, the most electricity it could produce would be about 335 W per square meter.
Calculations by Miller, who is a member of Yablonovitch’s research group, showed that the semiconductor gallium arsenide is capable of reaching the SQ Limit. Based on this work, a private company co-founded by Yablonovitch, Alta Devices Inc., has been able to fabricate solar cells from gallium arsenide that have achieved a record conversion efficiency of 28.4%.
"Owen Miller provided an accurate theory on how to reach the SQ Limit that for the first time included external fluorescence efficiency," Yablonovitch says. "His calculations for gallium arsenide showed that external fluorescence provides the voltage boost that Alta researchers subsequently observed."
Solar or photovoltaic cells represent one of the best possible technologies for providing an absolutely clean and virtually inexhaustible source of electricity. However, for this dream to be realized, solar cells must be able to efficiently and cost-competitively convert sunlight into electricity. They must also be far less expensive to make.
The most efficient solar cells in commercial use today are made from monocrystalline silicon wafers and typically reach a conversion efficiency of about 23%. High grade silicon is an expensive semiconductor but is a weak collector of photons. Gallium arsenide, although even more expensive than silicon, is more proficient at absorbing photons, which means much less material is needed to make a solar cell.

"Gallium arsenide absorbs photons 10,000 times more strongly than silicon for a given thickness but is not 10,000 times more expensive," says Yablonovitch. "Based on performance, it is the ideal material for making solar cells."
Past efforts to boost the conversion efficiency of solar cells focused on increasing the number of photons that a cell absorbs. Absorbed sunlight in a solar cell produces electrons that must be extracted from the cell as electricity. Those electrons that are not extracted fast enough, decay and release their energy. If that energy is released as heat, it reduces the solar cell’s power output. Miller's calculations showed that if this released energy exits the cell as external fluorescence, it would boost the cell’s output voltage.
"This is the central counter-intuitive result that permitted efficiency records to be broken," Yablonovitch says.
As Miller explains, "In the open-circuit condition of a solar cell, electrons have no place to go so they build up in density and, ideally, emit external fluorescence that exactly balances the incoming sunlight. As an indicator of low internal optical losses, efficient external fluorescence is a necessity for approaching the SQ Limit."
Using a single-crystal thin film technology developed earlier by Yablonovitch, called "epitaxial liftoff," Alta Devices was able to fabricate solar cells based on gallium arsenide that not only smashed previous solar conversion efficiency records, but can be produced at well below the cost of any other solar cell technology. Alta Devices expects to have gallium arsenide solar panels on the market within a year.
"The SQ Limit is still the foundation of solar cell technology," says Yablonovitch. "However, the physics of light extraction and external fluorescence are clearly relevant for high performance solar cells."
Yablonovitch believes that the theoretical work by he and his co-authors, in combination with the performance demonstrations at Alta Devices, could dramatically change the future of solar cells.
"We're going to be living in a world where solar panels are very cheap and very efficient," Yablonovitch says.


Wednesday, November 2, 2011

Brazilian Designer Selects Ticona's Long Fiber Reinforced Thermoplastic to Design a Chair

A new plastic chair introduced in Brazil is receiving awards for its contemporary look with a focus on features such as geometry, harmony and consistency thanks to Ticona Engineering Polymers and the exceptionally well balanced property profile of Celstran® long fiber reinforced thermoplastics (LFRT).


Manufactured from a single mold, the IC01 chair by designer Guto Indio da Costa uses a glass fiber reinforced polypropylene (PP) Celstran LFRT grade from Ticona that offers design, processing and cost advantages vs. unfilled polypropylenes and acrylonitrile butadiene styrenes (ABS), as well as short glass reinforced nylons and polyesters. "In addition to the significant weight and cost advantages over typical materials used in similar applications, this Celstran PP LFRT offers high stiffness, strength, toughness and low warpage while providing wide design latitude, colorability and a much better surface finish out of the mold," said Simone Orosco, Development & Marketing Manager, Brazil.

Celstran PP LFRT grades from Ticona offer several advantages:

Weight and cost savings less weight at equal wall thickness

Improved creep resistance resists compression and deformation from skin/cover shrinkage

Improved impact performance reduces breakage during shipping, handling and assembly

Improved notched impact strength better load transfer and predictable performance in cold temperatures

Superior tensile strength higher tensile strength and elongation resulting in ductile behavior

The Ticona team, including George Dini, sales manager, Brazil, worked with the Rio de Janeiro design house Indio da Costa and its Brazilian molder Pnaples, which is supplied by the Ticona distributor Tecnopolymer. The chairs are injection molded in various colors by adding tint concentrates to the base Celstran PP LFRT.


Tuesday, November 1, 2011

SABIC's Low-moisture Absorbing PEI Replaces PMI in Aerospace Applications


SABIC's Innovative Plastics strategic business unit is presenting the low moisture absorption of Ultem* polyetherimide (PEI) foam for composite aircraft structures. Ultem resin's low-moisture absorption is critical in that it helps address two major aircraft OEM challenges: reducing weight for fuel conservation and emissions reduction, and lowering systems costs while delivering equal or better performance than traditional materials. Low moisture absorption combined with the proven flame-smoke-toxicity (FST), dielectric, acoustic and thermal performance of Ultem foam underscores the pioneering work of SABIC in engineering superior, world-renowned thermoplastic solutions for the aircraft industry.

"By replacing competitive materials such as polymethacrylimide (PMI) with Ultem foam, OEMs and tiers can meet their environmental goals and industry challenges, while lowering systems costs by streamlining processing and extending the application's useful life," said Kim Choate, Global Product Marketing Manager, Ultem, Innovative Plastics. "Investment in proactive laboratory testing is just one of the ways in which SABIC delivers ever-better solutions for the aircraft industry to improve performance and drive cost advantages across the board."

Ultem foam products, available in three densities, are manufactured as boards for use in skin-core-skin composite structures. Applications include luggage bins, galleys and lower wall panels.

Ultem Foam Outperforms PMI in Hot, Humid Conditions:

Testing involved exposing Ultem foam and PMI foam boards to elevated heat (70C/158F) and humidity (85 percent relative humidity) in an environmental chamber. Test results demonstrated that the Ultem foam absorbed less than 0.5 percent moisture by weight at 1,000 hours. In contrast, PMI absorbed five to six percent moisture by weight at just 150 hours and maintained those results through 1,000 hours.
Weight gain from moisture absorption adds to the overall weight of the aircraft, adversely affecting fuel consumption and emissions. On average, an aircraft will burn about 0.03 kg (0,06 lbs) of fuel per hour for each kilogram (2.2 lbs) carried on board. Given that the total commercial fleet flies about 57 million hours per year, cutting one kilogram per flight can save roughly 1,700 tons of fuel and 5,400 tons of carbon dioxide per year.
In addition, moisture absorption itself can have a disruptive effect on electronics (interference) and may cause condensation on sensitive areas of the interior. The cycle of absorption and drying that occurs as the aircraft travels through different environmental conditions also has the potential to cause delamination of a composite structure and can distort the dimensions of a part. Such results can lead to more-frequent repairs and downtime.

Ultem Foam Avoids Time and Cost of Drying Boards:

Another important benefit of Ultem foam's outstanding low moisture absorption occurs during processing. Often, PMI foam boards must be conditioned (dried and/or stored in a special area) before they can be machined, compression molded or thermoformed. This extra step adds time, costs and overhead to the process. Ultem foam avoids this scenario. Further, PMI may have to undergo a multi-step annealing process. In addition, Ultem foam is compatible with metals and thermoset laminate materials, potentially eliminating adhesives and other secondary operations that are common to the aircraft industry.
Ultem foam has a density of 10 to 30 times less than the traditional resin. It exhibits the outstanding FST performance of Ultem resin (it meets Ohio State University (OSU) performance levels below 50/50) and offers excellent dielectric and acoustic properties, including demonstrated noise reduction coefficients of greater than 0.3.


Monday, October 31, 2011

Scientists make human blood protein from rice

Scientists at a Chinese university said Monday they can use rice to make albumin, a protein found in human blood that is often used for treating burns, traumatic shock and liver disease.
When extracted from rice seeds, the protein is "physically and chemically equivalent to blood-derived human serum albumin (HSA)," said the research in the US-published Proceedings of the National Academy of Sciences.

The findings could lead to a breakthrough in production of HSA, which typically comes from human blood donations.

The demand for the blood protein is about 500 tons per year worldwide, and China has faced worrying shortages in the past.

The rice method was devised by scientists at Wuhan University in China and colleagues from the National Research Council of Canada and the Center for Functional Genomics at the University at Albany in New York.

First, they genetically engineered rice seeds to produce high levels of HSA. Then, they worked out a way to purify the protein from the seeds, gathering about 2.75 grams of the protein per kilogram (2.2 pounds) of rice.

When they tested the rice-made protein in rats with liver cirrhosis, a common condition for which the human equivalent is often used, they found it produced similar outcomes to treatment with HSA.

"Our results suggest that a rice seed bioreactor produces cost-effective recombinant HSA that is safe and can help to satisfy an increasing worldwide demand for human serum albumin," said the study.

The protein is often used in the manufacture of vaccines and drugs and is given to patients with serious burn injuries, hemorrhagic shock and liver disease, the researchers said.

In 2007, a shortage in China led to price spikes and a brief rise in the number of fraudulent albumin medicines on the market.

Concerns have also been raised about the potential for the transmission of hepatitis and HIV, since the protein comes from human blood.

Large-scale planting of genetically modified rice fields that could produce enough seed for mass production of the protein also raises environmental and food supply contamination concerns, since rice is a major world food staple.

However, the study authors noted that rice is a largely self-pollinating crop, pointing to previous studies that showed "a very low frequency (0.04-0.80%) of pollen-mediated gene flow between genetically modified (GM) rice and adjacent non-GM plants."

More research is needed to evaluate the safety of the rice-derived protein in animals and humans before it can be considered for the market.

Sunday, October 30, 2011

Body parts manufacturing: Future may be now

http://www.cbsnews.com/8301-500165_162-20126356/body-parts-manufacturing-future-may-be-now/

CBS News)  
Synthetic body parts sound like something out of a science fiction novel, but body parts that can be used in humans are actually being made and used. A medical professor in England has developed a new nano-plastic that has enabled a world first in organ transplantation and opened the door to "off-the-shelf" body parts. 
CBS News correspondent Mark Phillips remarked that professor Alex Seifalian's work might well be the start of a whole new medical industry. While the technique is not yet approved in the United States, Seifalian's London lab is already getting body part orders from other countries around the world.
Phillips, who recently visited Seifalian's lab, reported that you might think you'd stumbled onto a film set for a re-make of "Frankenstein" in which the synthetic parts are manufactured. Bubbling vats there contain noses, ears -- even a windpipe and trachea.
But how are the parts actually made?
Seifalian explained the breakthrough technique for manufacturing replacement organs happens with the help of a a special plastic that, Phillips noted, has the potential to change the transplant landscape.
On his visit to the lab, Phillips asked, "So an actual living windpipe grows in a jar?"
Seifalian said, "Exactly. So that's what's transplanted."
There has only been one actual transplant so far of what's called a "wholly tissue-engineered synthetic windpipe." It was successfully completed in a Stockholm, Sweden, hospital in June.
The recipient, Andemariam Teklesenbet Beyene, from Eritrea, who had previously been diagnosed with inoperable throat cancer, is now recovering well.
Beyene told Phillips, "They soon discharged me, and then I was feeling OK, you know, I was feeling hope for the future."
The technique involves making a glass mock-up of the diseased body part and then coating it in a new type of polymer -- a rubbery type substance developed in a lab. Seifalain explained it's a special type of plastic with microscopic pores, onto which stem cells taken from the patient can attach and grow.
Chemicals in a "red liquid growth medium" determine that the stem cells grow into the required type of tissue.
Phillips said, "So basically, you're providing a scaffold -- a kind of foundation or form around which the patient's own cells then regrow the diseased body part."
Seifalian said, "The cell remodels itself and becomes the patient's own."
And because the cells are the patient's own, they are not rejected by the body's immune system -- the usual problem with transplants.
And the trachea, Seifalian says, may be just the beginning.
Seifalian said, "The heart is possible, but a more complex organ like lung and brain are more complex to build, but liver is possible."
The lab is already growing blood vessels to be used in heart bypass surgery.
But Seifalian shies away from descriptions that liken his work to the construction of the fictional character in Mary Shelley's book "Frankenstein."
"We're not making (a) human," he said. "We're just making spare parts, human spare parts. You know, just simple."


Saturday, October 29, 2011

Boeing funds strategic carbon fibre recycling collaboration with the University of Nottingham


In desert ‘aircraft graveyards’, where retired planes often go when flight service ends, good parts are removed and sold and many materials are recycled. Increasingly popular strong, light carbon fibre composites (or carbon fibre reinforced plastics) were once too difficult to recycle, so went to landfill.

In the past decade, researchers at Nottingham led by Dr Steve Pickering have developed ways to recycle carbon fibre composites. They have worked with Boeing since 2006. Now Boeing plans to invest $1,000,000 per year in a strategic research collaboration – an inclusive partnership in which Boeing will collaborate with Nottingham in all its composites recycling activities.

Sir Roger Bone, President of Boeing UK, launched this major new collaborative investment in carbon fibre recycling research involving Boeing Commercial Airplanes and The University of Nottingham’s Faculty of Engineering when he visited Nottingham on Monday 24 October.

First introduced into military aircraft 30 years ago, carbon fibre composites are stronger and lighter than any other commonly available material. This helps reduce fuel consumption and carbon emissions in aircraft making modern passenger planes more efficient and cheaper to fly. Advanced composite materials comprise half the empty weight of Boeing’s new 787 Dreamliner.

“Boeing wants to be able to recycle composite materials from manufacturing operations to improve product sustainability and to develop more efficient ways of recycling aircraft retired from commercial service,” said Sir Roger Bone, President of Boeing UK Ltd.

“The ultimate aim is to insert recycled materials back into the manufacturing process, for instance on the plane in non-structural sustainable interiors applications, or in the tooling we use for manufacture. This work helps us create environmental solutions throughout the lifecycle of Boeing products.” 

“Aerospace is a priority research area for this University,” said Professor Andy Long, Dean of the Faculty of Engineering, Professor of Mechanics of Materials and Director of the Institute for Aerospace Technology. “This recognises the sector’s potential for growth and our ability to deliver influential world-class research and knowledge transfer to address global issues and challenges.

Our agreement formalizes a long-term working commitment between The University of Nottingham and Boeing. We have been working together for over six years on mutual R&D activities in aircraft recycling as well as novel applications for power electronics. We share the aims of improving environmental performance of aircraft and using materials more sustainably."

In the strategic collaboration on composites recycling Boeing will provide funding of $1,000,000 per year initially for three years, but with the intention to continue with a rolling programme. The collaboration with Boeing will further develop:
• recycling processes
• technology to process recycled fibre into new applications
• and new products using recycled materials, in collaboration with other suppliers.

Boeing was a founding member six years ago of AFRA, the Aircraft Fleet Recycling Association. AFRA is a non-profit standards-setting association for the aerospace industry. Nottingham joined two years later, and a significant part of this agreement will involve working with several other AFRA member companies on the very difficult challenge of aircraft interiors recycling.

“Through this work, Boeing and Nottingham intend to develop quality and performance standards for recycled aerospace carbon fibre,” said Bill Carberry, Project Manager of Aircraft and Composite Recycling at Boeing and Deputy Director of the Aircraft Fleet Recycling Association.

“Our research at Nottingham has been developing recycling processes for carbon fibre composites for over 10 years in projects funded by industry, UK Government and EU,” said Dr Steve Pickering.“As well as recycling processes, we are creating applications to reuse recycled material.

“With Nottingham, Boeing is a partner in the ongoing Technology Strategy Board (TSB) funded project AFRECAR (Affordable Recycled CARbon fibre). With colleagues Professor Nick Warrior and Professor Ed Lester, and industrial collaborators including Boeing, we are developing high value applications for recycled carbon fibre along with new recycling processes.”

Sunday's THOUGHTFUL POST : THE “BENT KEY PRINCIPLE”

 🔑 THE “BENT KEY PRINCIPLE” How a Tiny Mistake Inside Toyota’s Factory Created One of the Most Powerful Ideas in Modern Business In the ear...