Thursday, July 1, 2021

How the surfaces of silicone breast implants affect the immune system

 Every year, about 400,000 people receive silicone breast implants in the United States. According to data from the U.S. Food and Drug Administration, a majority of those implants need to be replaced within 10 years due to the buildup of scar tissue and other complications.


A team led by MIT researchers has now systematically analyzed how the varying surface architecture found in these implants influences the development of adverse effects, which in rare cases can include an unusual type of lymphoma.


“The surface topography of an implant can drastically affect how the immune response perceives it, and this has important ramifications for the [implants’] design,” says Omid Veiseh, a former MIT postdoc. “We hope this paper provides a foundation for plastic surgeons to evaluate and better understand how implant choice can affect the patient experience.”





The findings could also help scientists to design more biocompatible implants in the future, the researchers say.

“We are pleased that we were able to bring new materials science approaches to better understand issues of biocompatibility in the area of breast implants. We also hope the studies that we conducted will be broadly useful in understanding how to design safer and more effective implants of any type,” says Robert Langer, the David H. Koch Institute Professor at MIT and the senior author of the study.

Veiseh, who is now an assistant professor at Rice University, and Joshua Doloff, a former MIT postdoc who is now an assistant professor at Johns Hopkins University, are the lead authors of the paper, which appears today in Nature Biomedical Engineering. The research team also includes scientists from Rice University, Johns Hopkins, Establishment Labs, and MD Anderson Cancer Center, among other institutions.

Surface analysis


Silicone breast implants have been in use since the 1960s, and the earliest versions had smooth surfaces. However, with these implants, patients often experienced a complication called capsular contracture, in which scar tissue forms around the implant and squeezes it, creating pain or discomfort as well as visible deformation of the implant. These implants could also flip after implantation, requiring them to be surgically adjusted or removed.


In the late 1980s, some companies began making implants with rougher surfaces, with the hopes of reducing capsular contracture rates and making them “stick” better to the tissue and stay in place. They did this by creating a surface with peaks extending up to hundreds of microns above the surface.


However, in 2019, the FDA requested a breast implant manufacturer to recall all highly textured breast implants (about 80 microns) marketed in the United States due to the risk of breast implant-associated anaplastic large cell lymphoma, a cancer of the immune system.

A new generation of breast implants that dates back a decade, having a unique and patented surface architecture that includes not only a slight degree of surface roughness, with an average of about 4 microns, but also other specific surface characteristics including skewness and the number, distribution, and size of contact points optimized to cellular dimensions, was designed to prevent those complications.

In 2015, Doloff, Veiseh, and researchers from Establishment Labs teamed up to explore how this unique surface, as well as others commonly used, interact with the surrounding tissue and the immune system. They began by testing five commercially available implants with different topographies, including degree of roughness. These included the highly textured one that had been previously recalled, one that is completely smooth, and three that are somewhere in between. Two of these implants had the aforementioned novel surface architecture, one with a 4-micron roughness and one with a 15-micron roughness, manufactured by Establishment Labs.

In a study of rabbits, the researchers found that tissue exposed to the roughest implant surfaces showed signs of increased activity from macrophages — immune cells that normally clear out foreign cells and debris.

All of the implants stimulated immune cells called T cells, but in different ways. Implants with rougher surfaces stimulated more pro-inflammatory T cell responses, while implants with the unique surface topography, including 4-micron average roughness, stimulated T cells that appear to inhibit tissue inflammation.

The researchers’ findings suggest that rougher implants rub against the surrounding tissue and cause more irritation. This may offer an explanation for why the rougher implants can lead to lymphoma: The hypothesis is that some of the texture sloughs off and gets trapped in nearby tissue, where it provokes chronic inflammation that can eventually lead to cancer.

The researchers also tested miniaturized versions of these implants in mice. They manufactured these implants using the same techniques used to manufacture the human-sized versions, and showed that more highly textured implants provoked more macrophage activity, more scar tissue formation, and higher levels of inflammatory T cells. The researchers also performed single-cell RNA sequencing of immune cells from these tissues to confirm that the cells were expressing pro-inflammatory genes.

“While completely smooth surface implants also had higher levels of macrophage response and fibrosis, it was very clear in mice that individual cells were more stressed and were expressing more of a pro-inflammatory phenotype in response to the highest surface roughness,” Doloff says.

On the other hand, implants with the unique surface architecture, including an optimized degree or “sweet spot” of surface roughness, at about 4 microns on average, and other specific characteristics, appeared to significantly reduce the amount of scarring and inflammation, compared to either the implants with higher roughness or a completely smooth surface.

“We believe that this is due to such surface architecture existing on the scale of individual cells of the body, allowing the cells to perceive them in a different way,” Doloff says.

Rachel Brem, director of breast imaging and intervention and a professor of radiology at George Washington University Medical Center, notes that the study “investigates one of the most timely and increasingly perplexing problems in breast reconstruction — how to identify silicone breast implants with the least immunologic response to minimize the risk of implant-induced lymphoma.”

“The finding of a complex inflammatory and anti-inflammatory response is critically important, as is the finding that the 4-micron textured implant results in a thinner, translucent capsule than that found with smooth implants, and is the optimal formulation of a silicone breast implant to result in the least thick, least overall immunogenic response,” says Brem, who was not involved in the study. “This is a critically important finding which will allow for the development of the optimal implant for patients.”

Toward safer implants

After performing their animal studies, the researchers analyzed samples from a large bank of cancer tissue samples at MD Anderson to study how human patients respond to different types of silicone breast implants.

In those samples, the researchers found evidence for the same types of immune responses that they had seen in the animal studies. Among their findings, they observed that tissue samples that had been host to highly textured implants for many years showed signs of a chronic, long-term immune response. They also found that scar tissue was thicker in patients who had more highly textured implants.

“Doing across-the-board comparisons in mice, rabbits, and then in human [tissue samples] really provides a much more robust and substantial body of evidence about how these compare to one another,” Veiseh says.

The authors hope that their datasets will help other researchers optimize the design of silicone breast implants and other types of medical silicone implants for better safety.

“The importance of science-based design that can provide patients with safer breast implants was confirmed in this study,” says Roberto de Mezerville, an author of the paper and head of R&D at Establishment Labs. “By demonstrating for the first time that an optimal surface architecture allows for the least possible inflammation and foreign-body response, this work is a significant contribution to the entire medical device industry.”

Other authors of paper include Marcos Sforza, Tracy Ann Perry, Jennifer Haupt, Morgan Jamiel, Courtney Chambers, Amanda Nash, Samira Aghlara-Fotovat, Jessica Stelzel, Stuart Bauer, Sarah Neshat, John Hancock, Natalia Araujo Romero, Yessica Elizondo Hidalgo, Isaac Mora Leiva, Alexandre Mendonca Munhoz, Ardeshir Bayat, Brian Kinney, H. Courtney Hodges, Roberto Miranda, and Mark Clemens.

The research was funded by Establishment Labs.

Source:MIT




Wednesday, June 30, 2021

Indian Oil Corp orders 15 hydrogen buses

 15 new hydrogen-powered buses have been ordered for Indian roads.

Indian bus manufacturer Tata Motors today (June 30) said it had received an order for the buses from Indian Oil Corporation as part of its effort towards ushering a hydrogen economy in the county.


Indian Oil hopes the initiative will act as a stepping-stone for various other key programs, which propose to introduce hydrogen-based mobility on different iconic routes and important sectors in the country.

As well as supplying the buses, Tata Motors will also collaborate with Indian Oil to undertake R&D projects and collectively study further the potential of fuel cell technology for commercial vehicles.


Commenting on the company’s involvement in the landmark project, Girish Wagh, President of Commercial Vehicle Business Unit at Tata Motors said, “We are delighted to win this prestigious tender from IOCL for it adds to Tata Motors’ rich legacy of introducing future-ready technologies for cleaner and greener public transport.





“We have successfully supplied 215 EV buses under FAME I and won orders for 600 EV buses under FAME II. This order to supply PEM fuel cell buses from a company as respected as Indian Oil Corporation further encourages our ongoing efforts on developing India-focused alternative sustainable fuels to transform the future of mobility in India.”


Source:www.h2-view.com



Tuesday, June 29, 2021

HYDROGEN STATIONS IN SOUTH KOREA:

 As of Jun 18, Korea had a total of 93 hydrogen charging stations, 23 of which were installed this year. The government aims to build an additional 87 stations by yearend, bringing the total to 180. Accordingly, we expect installations to accelerate in 2H21.


The two major operators of hydrogen charging stations in Korea are HyNet (established in Sep 2019) and Kohygen (Mar 2021, a specialized constructor/operator of hydrogen charging infrastructure for commercial vehicles, such as buses and trucks). We note that the business of commercial hydrogen charging stations has only recently been launched. Under the control of the Ministry of Environment, 16 private hydrogen charging stations are to be built, 10 of which are to be operated by Kohygen, 2 by HyNet, and 1 each by Hyundai Steel, E1, GS Caltex, and Daedo HyGen. For reference, Hyosung Heavy Industries is the number-one domestic installer of hydrogen charging stations.


Source:Business Korea


Monday, June 28, 2021

NPROXX powering London’s first hydrogen ambulance:

 NPROXX has worked closely with ULEMCo to assist in the design of the conversion, deriving a design solution that places the hydrogen storage tank in the roof space of the ambulance.

This will give the ambulance a payload of up to 900kg while offering a low-floor chassis for easy patient access.




Named ZERRO, the prototype vehicle will be powered by a combination of a 30kW fuel cell with NPROXX’s type IV pressure vessel and a 400V 92kWh battery.

The fuel cell will act as a range-extender to charge the battery when needed and will give the ZEROO an expected average daily range of 200 miles and a top speed of 90mph.


Philipp Breuer, Sales Manager (Automotive & Heavy-Duty Vehicles) at NPROXX, said, “Emergency ambulances need to be ready to go at any time, so speed of re-fuelling and range are key factors when looking to transition these vehicles to a decarbonized energy source.


Source:NPROXX


World’s first industrial dynamic green ammonia demonstration plant

Green ammonia, produced from renewable energy, is an excellent fuel and fertilizer that can potentially replace significant volumes of fossil fuels and help accelerate the transition to a world powered by renewable energy. The green ammonia plant, which will be built by Skovgaard Invest, Vestas and Topsoe, will be state of the art and the world’s first so-called dynamic green ammonia plant. The dynamic approach entails that the clean power from wind turbines and solar panels will be connected directly to the electrolysis unit making it more cost-effective than if involving a battery or hydrogen storage.




Topsoe will design the plant’s dynamic ammonia technology to secure optimal production and adapt to the inherent fluctuations in power output from wind turbines and solar panels. The ammonia plant will interface to a green hydrogen solution developed by Vestas, integrating electrolysis with wind and solar in one smart control system.


The partnership will jointly invest in the project.


”We are proud, that the Danish technology program acknowledges our project as being unique when it comes to developing and demonstrating new energy technology that holds a global potential. The green ammonia plant is a prime example of how renewable electricity can be converted to sustainable fuels via electrolysis. For us, this is one of more partnerships showing that we already today have the technologies to introduce new clean solutions showcased by this green ammonia project.


We are excited to move forward with the world’s first fully dynamic industrial-scale renewable ammonia plant as it highlights the viability of electrification beyond the power sector. The project demonstrates an integrated power-to-X use case with significant demand potential. Vestas is uniquely positioned to integrate renewable energy with other technologies and we are proud to lay the foundation for scalable power-to-X production together with our partners on this project.”


Facts about the green ammonia plant

Location: Western Jutland, Denmark.

Output: More than 5,000 ton green ammonia annually from renewable power. This production will prevent 8,200 tons of CO2 from being emitted into the atmosphere every year.

Power supplied from renewable sources: 12 MW from six existing V80-2.0 MW Vestas wind turbines and 50 MW new solar panels.


The potential of Green ammonia:

Green ammonia has huge potential in the global effort to substitute fossil fuels with sustainable alternatives. It has been highlighted as a superior green fuel for international shipping that currently accounts for around 2% of global energy-related CO2 emissions. Already today, ammonia is used as fertilizer globally and the production from fossil fuels [for this purpose alone?] accounts for around 1% of global CO2 emissions.


Source:Hydrocarbonprocessing.com


Thursday, June 24, 2021

Hexagon Purus to supply H2 storage systems for a German mobility project

 Hexagon Purus has received an order for hydrogen storage systems from KEYOU, a Munich-based clean mobility company. Hexagon Purus will supply its technology for KEYOU’s H2 combustion engine DEMO Bus with a leading European OEM and its DEMO truck project. Hexagon Purus’ systems will be supplied from its Kassel, Germany, and Kelowna, Canada facilities. The first deliveries will be in November 2021.


KEYOU has redesigned the traditional internal combustion engine enabling it to run on hydrogen as a sustainable and clean fuel, bringing about a large leap in propulsion development. The company has succeeded in developing an emission-free, yet cost-effective hydrogen drive for commercial vehicles – without compromising performance, capacity, or range.


“KEYOU and Hexagon Purus share a common vision and a common interest – to drive the energy transition and achieve clean air everywhere,” said Michael Kleschinski, EVP Hexagon Purus. “As more European countries and cities announce strategic policies to promote the decarbonization of mobility, more commercial vehicles—especially city buses and heavy-duty trucks—will be rapidly transitioned. KEYOU is dedicated to accelerating this development, and we are pleased to be a part of this exciting project.”




“Hexagon Purus is a global leader and expert for hydrogen storage and tank systems with over 50 years of experience in high-pressure technology. Since hydrogen storage is an integral part of our technology, we’re glad to have such a strong partner supporting us to realize our two prototype vehicles,” commented Thomas Korn, CEO, and co-founder of KEYOU.


Source: Hexagon Composites



Supermetals versus superbugs

 With pathogenic bacteria rapidly overcoming our arsenal of organic antibiotics, James Mitchell Crow asks if it is time to revisit metal-based antimicrobials



Liquid suspensions of heavy metal complexes are generally not meant to be swallowed. But nestled between lead and polonium at position 83 on the periodic table is an elemental exception. Bismuth is a heavy metal with a long history of medical use. Bismuth subsalicylate has been used to treat gastrointestinal troubles since the 18th century, and in the US has been marketed as over-the-counter medicine Pepto-Bismol since 1919. Today it is widely prescribed as part of a combination therapy to treat stomach ulcers caused by the drug-resistant Gram-negative bacterium, Helicobacter pylori.

‘Bismuth has this strange double character of being a heavy metal with this powerful antimicrobial activity, but at the same time seems very low toxicity within humans,’ says Philip Andrews, an organometallic chemist at Monash University in Melbourne, Australia.

With bacterial infections from drug-resistant pathogens now leading to tens of thousands of deaths per year across the US and EU, bismuth’s antimicrobial properties are no longer just a curiosity. Andrews’ group is one of a growing number around the world actively investigating metal complexes as potential antibiotics.

As well as bismuth, complexes based on metals such as silver or gallium, ruthenium or zinc are increasingly being investigated – either alone, in combination with other metals, or paired with conventional organic antibiotics – as a way to treat drug-resistant pathogens. Across the field there’s a cautious optimism that metal complexes may represent a new way of fighting bacteria that is far harder for them to evolve resistance against.

These unconventional antimicrobial compounds could be the perfect tonic to our dwindling range of options against superbugs. ‘If we are going to look at future antimicrobial compounds, metals really have to be part of the game,’ Andrews says. ‘And it is going to take chemists who have the real understanding and knowledge of how to design, develop and apply those compounds, to bring them through in the medicinal chemistry sphere,’ he adds.

A multitude of metals

Metal complexes and metalloids have been used in medicine since ancient times. Antimony, for example, was used by the ancient Egyptians to treat fevers and skin irritation. More recently, since the start of the 20th century, antimony complexes have been a frontline treatment for leishmaniasis caused by infection with Leishmania parasites. Around the same time, arsenic-containing arsephenamine (known as Salvarsan) was discovered as the first effective treatment for syphilis.

With Alexander Fleming’s 1928 discovery of penicillin, however, metal complexes rapidly fell out of favour as potential medicines. Medicinal chemistry evolved into an almost exclusively all-organic pursuit, often inspired by natural products. But the wellspring of new antimicrobials based on natural products seems to have run dry, notes medicinal chemist Mark Blaskovich, who directs the Centre for Superbug Solutions at the University of Queensland, Australia. Of all the antibiotics currently in clinical trials, around 75% are simply derivatives of existing antibiotics, so are likely to be vulnerable to existing bacterial drug resistance mechanisms.

‘Similarly, pharma companies have large libraires of compounds but have been very unsuccessful at discovering antibiotics within those collections,’ Blaskovich adds. One reason for this failure, he suggests, could be that these collections are curated to include compounds that are ‘drug like’ in physical chemical properties such as size, shape and charge. ‘But if you look at the majority of approved antibiotics, they break most of the rules those companies are using to make their collections.’

Since 2015, Blaskovich and his colleagues have been gathering a broader set of structures, including as many rule-breakers as they can find, from which to hopefully regenerate the pipeline of novel structures to test as potential antibiotics. With funding from the Wellcome Trust and the University of Queensland, the team set up an initiative called the Community for Open Antimicrobial Drug Discovery (Co-Add).

‘Over the last 100 years chemists around the world have been making weird and wonderful molecules for a variety of reasons – some to develop new methodology, some to develop bioactive molecules against other disease target, some just usual shapes or sizes,’ Blaskovich says. ‘Our idea was to tap into this diversity by making it very easy for chemists around the world to test their compounds for antimicrobial activity,’ Blaskovich says. Co-Add offers a free screening service for any submitted compound. It even pays for shipping.

Each compound is tested against five different types of bacteria and two different types of fungi. ‘Anything active, we confirm the activity in a concentration-dependent test, and counter-screen for toxicity against mammalian cells.’ The results are sent to the submitter, who retains all rights to the compound.

Since Co-Add was established five years ago, over 300 academic groups from around the globe have submitted over 300,000 compounds to the database. Around 2500 have proven to be active antimicrobial compounds with selectivity over mammalian cell toxicity. ‘We now have this very large accessible database that other scientists can use, ideally to develop predictive models for what type of properties give compounds antibacterial activity,’ Blaskovich says.

Co-Add was not set up with metal complexes particularly in mind, but in 2018 Swiss postdoc Angelo Frei joined the team. Frei’s background was in medicinal metal complex research. ‘He looked through the database and found we had close to 1000 different metal complexes in our library,’ Blaskovich says. These complexes proved to be a particularly promising subset in the Co-Add collection. Among purely organic molecules in the database, the hit rate for compounds that are active against at least one bacterial strain, and are non-toxic to mammalian cells, is 0.87%. But for the metals, the hit rate was 9.9%. Compared to organic compounds, metal compounds were more likely to show antibacterial activity, but no more likely to be toxic to mammalian cells.

This lack of toxicity may be surprising to many. The one significant exception to the lack of metals in medicinal chemistry is the platinum-based chemotherapy drug cisplatin, approved in 1978 and still used in most cancer treatments today – despite its side effects. ‘We know cisplatin is very toxic, even though it is very effective,’ Andrews says. Due to the toxicity of this one high-profile metal-based drug, metal complexes in general have become associated with toxicity. ‘The worry has been that, if you ingest metal complexes, there is a real problem with poisoning.’

Blaskovich agrees. ‘One of the reasons metal complexes have not been used much at all in medicinal chemistry, other than as anticancer compounds, is probably that their initial association as an anticancer therapy has given the perception that these compounds are generally quite toxic and not very useful as general drugs,’ he says. The Co-Add analysis suggests that perception is unjustified. ‘Among the compounds we had assembled, the metal complexes did not have any more toxicity than organic compounds against human cells. It opens up the possibility we should be looking at metals as a potentially very rich source of new antimicrobial agents.’

A silver lining

Katharina Fromm was working on the coordination chemistry of silver compounds when, in the early 2000s, she was approached by a team of material scientists interested in developing antibacterial coatings for medical implants. Fromm, now at the University of Fribourg in Switzerland, has been looking at the antibacterial properties of metal compounds ever since.

Silver is one of the most well-known antimicrobial metals and was used at least as far back as the 1920s in certain wound treatments. Yet despite silver’s long history of use and recent revival, precisely how silver works as an antimicrobial is still being established. ‘I was very surprised when I got into the silver story – there are a lot of studies still to be done for this basic understanding,’ Fromm says.

Compared to the more than half a century of research into organic antibiotics’ mode of action, metals have received much less attention. But we do know that, compared to organic antibiotics, the activity of metal complexes is – well, complex. Organic antibiotics mainly hit one specific target, whereas metals often appear to be more scattershot. This complexity has added to the challenge of understanding silver’s antimicrobial mode of action, but from a functional point of view potentially adds a key advantage, Fromm notes. ‘If you think about vancomycin, this drug interacts with two amino acids in a protein in the outer membrane of the bacteria,’ she says. ‘If the bacteria mutate just one of those amino acids in the protein, they become immune. Whereas silver ions start at the membrane but also do damage inside, generate ROS [reactive oxygen species], change the function of proteins and so on, so can have multiple places of attack.’

Understanding what silver complexes are doing in the bacteria, to find ways to make better therapeutics, has been a focus of Fromm’s research. ‘If you know the molecular story you can act at the different pressure points to block the bacteria’s defence systems,’ Fromm says. The slow release of silver ions seems to be the key to silver complexes’ bioactivity. But bacteria possess a protein called SilE that seems to act as a sponge for silver ions, detoxifying them. ‘If you block the expression of this protein, you could clearly render the bacteria much weaker,’ she says. Fromm and her team are increasingly focussed on exploring the synergistic effects that can be gained by combining silver with other metal complexes, which may block SilE’s function, for example. ‘If we can learn to hit with two or three weapons at the same time, that will be much more important in the future,’ she says.

Getting down to bismuth

Andrews wasn’t looking for a new antimicrobial when he started researching bismuth. ‘Back in 2001 we got funded to set up the Centre for Green Chemistry within Monash University, and we started looking at benign metals for doing sustainable chemistry,’ Andrews recalls. ‘Bismuth was one of the metals we were very interested in.’

But in 2005, researchers Barry Marshall and Robin Warren were awarded the Nobel prize in physiology or medicine for their discovery that H. pylori infection was the cause of stomach ulcers. They also showed Helicobacter infection could be treated with bismuth. Andrews became intrigued by bismuth’s selective toxicity to bacterial cells. ‘We discovered, looking around the literature, that there had been very little done to explore why that might be the case,’ he says. ‘I think the big problem was really a chemistry problem. Many bismuth compounds were difficult to make, insoluble and difficult to characterise.’

Andrews set out to improve these aspects of bismuth chemistry, developing reproducible syntheses and good characterisation, ‘to the extent we knew what we were making, so we could confidently study the biological activity and get a handle on their mode of action’.

Another aspect of organometallic chemistry that could be considered an advantage or disadvantage over organic drugs, depending on your viewpoint, is the potential structural lability of biochemistry of metal complexes. Whereas most drug molecules arrive at their site of action with original structure intact, metal complexes can often switch ligands, depending on what is around them. ‘And the biological environment is just full of potential ligands – proteins, siderophores, sugars, peptides,’ Andrews says. But that susceptibility can be exploited, his group’s work suggests. ‘We find we can tune the kinetic and thermodynamic stability of the complex, based on particular ligands.’ One trend Andrews has observed is that the more ionic the compounds are, the more labile they are – and the more bioactive. Moving from carboxylic to sulfonic acid ligands gives two orders of magnitude higher antimicrobial activity.

Part of the appeal of metal complex chemistry is the ease with which analogues of active compounds can be created, simply by switching ligands. ‘We are really interested in what happens when you put two or three different types of ligand around the metal,’ Andrews adds. ‘The studies we’ve done seem to show that as you move away from one type of ligand, you improve the bioactivity.’

The gold standard

Hongzhe Sun from the University of Hong Kong was also intrigued by bismuth’s capability to treat drug-resistant stomach ulcer infections. ‘Bismuth-containing antibiotic triple therapy has become the standard treatment for resistant Helicobacter infection, and we wondered whether we could extend the concept to other persistent bacteria, to use bismuth to restore the activity of other antibiotics,’ he says.

For the broad β-lactam family of antibiotics, metallo-β-lactamase enzymes such as the relatively recently emerged New Delhi metallo-β-lactamases (NDMs) are the drugs’ nemesis. These zinc(ii)-containing enzymes can cleave the antibiotic’s β-lactam ring, conferring bacterial resistance to all bicyclic β-lactams including carbapenems, the antibiotics of last resort against multidrug resistant infections. To inhibit NDMs, medicinal chemists had been trying to develop substrate mimics to block the NDM active site, or to develop a zinc chelator to remove the zinc. ‘We wondered if the bismuth would have high affinity for the sulfur in the enzyme,’ Sun recalls. The team showed that bismuth simply kicks the zinc out of the NDM active site, displacing the metal and inhibiting the enzyme’s activity. In mice, the bismuth(iii) compound restored the activity of the β-lactam meropenem against NDM-positive bacteria.

The team is continuing to extend the concept to resistance enzymes that bacteria may carry in addition to NDM, such as mobilised colistin resistance enzyme MCR-I. ‘We would like to use one inhibitor to inhibit more than one resistant gene,’ Sun says. The team recently showed that the gold(i)-containing antirheumatic drug, auranofin, was a dual inhibitor of NDM-I and MCR-I, displacing zinc(ii) from their active sites.

The team has also pioneered new approaches to map the impact across the bacterial cell when it is treated with a metal complex. ‘We don’t have sufficient approaches or methodologies to understand metal–protein interaction in cells and tissues – some metal–protein interactions can be labile, so you can’t isolate them,’ Sun says. So the team developed metalloprotemics, in which a fluorescent agent combined with an azide photoaffinity group could be used to capture the interaction between metal and protein. ‘This is a very useful approach – we can dig out lots of metal–protein interactions. We also combine it with metabolomics, to see if that corresponds with certain protein function disruption.’

With bismuth, for example, inhibition of urease activity was long suspected as a mode of action against H. pylori. Rather than inhibit the urease directly, Sun showed bismuth inhibits a urease chaperone protein – and then identified new drug leads that also hit this target. The team has also used this suite of techniques to examine the mode of action of several other metals. They showed that gallium(iii) antimicrobials target the essential transcription enzyme RNA polymerase in Pseudomonas aeruginosa, thereby suppressing RNA synthesis and impairing bacterial metabolism and energy utilization. They also identified 34 proteins directly bound by silver ions in Escherichia coli, impairing their function to the extent that key aspects of the bacterium’s central metabolism are stalled.

In the age of antibacterial resistance, one of the most compelling aspects of bismuth(iii) compounds’ particular biochemistry is that bacteria do not seem to have gained any resistance to it despite its long-term use. One factor may be that because metals can hit multiple targets in the cell, it is harder for bacteria evolve resistance. One additional advantage for ions such as gallium(iii) and bismuth(iii) is that bacteria have to import iron for their survival, and similar ions can ride the same pathway. ‘We can use that trojan horse effect to get bismuth transported in,’ Andrews says. ‘If a cell decides to shut down its iron uptake because it wants to stop a metal that mimics iron from coming in, it is not going to survive anyway.’

Another aspect at play for bismuth, Andrews suspects, comes down to hydrolytic chemistry, which he and his team have explored. ‘When a bismuth complex reacts with water, it starts to form chunks of bismuth oxide. You build up these clusters, maybe nine to 38 bismuth atoms in size.’ These clusters are essentially inactive, shutting down bismuth’s antimicrobial bioactivity. Metals such as silver, in contrast, persist in the body or the environment as silver ions. ‘The problem with these materials is that if the concentration is below that need to completely kill the bug, you create an environment where resistance can develop,’ Andrews says. ‘We hope that by forming these bismuth oxide chunks, you take it away from being an active antimicrobial and then hopefully the bugs don’t develop resistance. Even after 100 years of people swallowing Pepto-Bismol, Helicobacter still hasn’t developed a way to become resistant, which gives us hope,’ he adds.

Precious metals

While bismuth has been one area of recent progress, and there is long-standing interest in silver, plenty of other metals are also showing promise as antimicrobials. Fromm and Blaskovich particularly note the ruthenium complexes being developed, which operate by generating reactive oxygen species upon light irradiation, for use as antibacterial photodynamic therapy agents. ‘We need alternatives to traditional antibiotics, and photosensitisation is one pathway by which metal complexes might give you additional modalities,’ Blaskovich says.

Meanwhile, the Co-Add analysis highlighted that complexes of gallium, palladium, silver, cadmium, iridium and platinum showed the most promising antibacterial activity. The sheer diversity of metals, ligands and geometries of the most active complexes was a notable outcome of the study. ‘We have been following up in collaboration with a couple of the groups, doing some preliminary drug-like assessments, putting them into some early in vivo types of efficacy model – and getting some potentially promising results from those,’ Blaskovich says. The team has also seen an uptick in the number of metal complexes being added to the database since their analysis was published – though that is in part because they are now actively soliciting compounds from groups doing metal complex work.

‘Interest in the area is absolutely growing,’ says Fromm. ‘You can look at the numbers of papers of metal-containing drugs, this is going up.’ But although academia can generate a lot of leads, financially it cannot complete the full clinical trials required to bring a new antimicrobial to market. ‘My personal opinion is probably countries, states, have to see that clinical trials can be financed somehow,’ Fromm says. ‘Big pharma is becoming more interested because they know the pipeline is quite empty against these superbugs – but the first step to be taken is a risk, and it is expensive.’

For now, academia’s role should be to produce enough preliminary studies to prove that metal complexes are a compelling option, she adds. ‘We see it now with vaccines,’ Fromm says. ‘If there hadn’t been the 20 years of basic research on mRNA, we would not have been able to develop these Covid vaccines so quickly.’

Metal-based antibiotics are at a nascent stage of development, Blaskovich says, but are now definitely on the radar. ‘It needs a concerted drive by somebody, and we are trying to help do that, to show these compounds really do have promise. I think that the one key piece of evidence still lacking is to have at least one quite thoroughly characterised candidate show efficacy against resistant bacteria in an in vivo mouse model,’ he says. ‘We are at the stage now where it could blossom very quickly.’

James Mitchell Crow is a science writer based in Melbourne, Australia

Source:chemistry world

WORKPLACE FLOOR MARKINGS : Simple Lines. Clear Rules. Fewer Incidents.

  WORKPLACE FLOOR MARKINGS Simple Lines. Clear Rules. Fewer Incidents. Clear floor markings are a visual management tool that improves safet...