Sunday, November 21, 2010

Scientists Manipulate Plant Metabolism to Produce Potential Precursor to Raw Material for Plastics

In a pioneering step toward achieving industrial-scale green production, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of compounds that could potentially be used to make plastics. The research is reported in Plant Physiology.
"We've engineered a new metabolic pathway in plants for producing a kind of fatty acid that could be used as a source of precursors to chemical building blocks for making plastics such as polyethylene," said Brookhaven Biochemist John Shanklin, who led the research. "The raw materials for most precursors currently come from petroleum or coal-derived synthetic gas. Our new way of providing a feedstock sourced from fatty acids in plant seeds would be renewable and sustainable indefinitely. Additional technology to efficiently convert the plant fatty acids into chemical building blocks is needed, but our research shows that high levels of the appropriate feedstock can be made in plants."
The method builds on Shanklin's longstanding interest in fatty acids - the building blocks for plant oils - and the enzymes that control their production. Discovery of the genes that code for the enzymes responsible for so called "unusual" plant oil production encouraged many researchers to explore ways of expressing these genes and producing certain desired oils in various plants.
"There are plants that naturally produce the desired fatty acids, called 'omega-7 fatty acids,' in their seeds - for example, cat's claw vine and milkweed - but their yields and growth characteristics are not suitable for commercial production," Shanklin said. Initial attempts to express the relevant genes in more suitable plant species resulted in much lower levels of the desired oils than are produced in plants from which the genes were isolated. "This suggests that other metabolic modifications might be necessary to increase the accumulation of the desired plant seed oils," Shanklin said.
"To overcome the problem of poor accumulation, we performed a series of systematic metabolic engineering experiments to optimize the accumulation of omega-7 fatty acids in transgenic plants," Shanklin said. For these proof-of-principle experiments, the scientists worked with Arabidopsis, a common laboratory plant.
Enzymes that make the unusual fatty acids are variants of enzymes called "desaturases," which remove specific hydrogen atoms from fatty acid chains to form carbon-carbon double bonds, thus desaturating the fatty acid. First the researchers identified naturally occurring variant desaturases with desired specificities, but they worked poorly when introduced into Arabidopsis. They next engineered a laboratory-derived variant of a natural plant enzyme that worked faster and with greater specificity than the natural enzymes, which increased the accumulation of the desired fatty acid from less than 2 percent to around 14 percent.
Though an improvement, that level was still insufficient for industrial-scale production. The scientists then assessed a number of additional modifications to the plant's metabolic pathways. For example, they "down-regulated" genes that compete for the introduced enzyme's fatty acid substrate. They also introduced desaturases capable of intercepting substrate that had escaped the first desaturase enzyme as it progressed through the oil-accumulation pathway. In many of these experiments they observed more of the desired product accumulating. Having tested various traits individually, the scientists then combined the most promising traits into a single new plant.
The result was an accumulation of the desired omega-7 fatty acid at levels of about 71 percent in the best-engineered line of Arabidopsis. This was much higher than the omega-7 fatty acid levels in milkweed, and equivalent to those seen in cat's claw vine. Growth and development of the engineered Arabidopsis plants was unaffected by the genetic modifications and accumulation of omega-7 fatty acid.
"This proof-of-principle experiment is a successful demonstration of a general strategy for metabolically engineering the sustainable production of omega-7 fatty acids as an industrial feedstock source from plants," Shanklin said.
This general approach - identifying and expressing natural or synthetic enzymes, quantifying incremental improvements resulting from additional genetic/metabolic modifications, and "stacking" of traits - may also be fruitful for improving production of a wide range of other unusual fatty acids in plant seeds.
This research was funded by the DOE Office Science, and by The Dow Chemical Company and Dow AgroSciences.

Thursday, November 18, 2010

LCA by Toyota Tsusho & Braskem Concludes that Green Polyethylene can Reduce GHG Emission


Braskem S.A. and Toyota Tsusho Corporation (Toyota Tsusho) have concluded the joint study of life cycle analysis for polyethylene derived from Brazilian sugarcane (Green Polyethylene), and has found that the Green Polyethylene emits less greenhouse gas (GHG) when compared to petroleum-based polyethylene even if it is delivered to the other side of the earth.

The University of Tokyo, Tokyo, Japan conducted the analysis under the collaborative study with the parties using the preliminary eco-efficiency study performed by Fundação Espaço Eco in Brazil (2007/2008), which shows that 1 kilogram of Green Polyethylene emits 1.35 kilograms* of CO2 equivalents of GHG when it is produced in Brazil, shipped to Japan, used by consumer as container and packaging, and then incinerated. Meanwhile, traditional petroleum-based polyethylene emits 4.55 to 5.10 kilograms in its overall life cycle. As a result, the study demonstrates that 70 to 74 percent of GHG can be reduced with the substitution of Green Polyethylene for traditional polyethylene.

For details of the study, Professor Masahiko Hirao and Assistant Professor Yasunori Kikuchi of the university will deliver a presentation at "International Congress on Sustainability Science and Engineering - ICOSSE11", the most renowned environmental congress held in Tucson, AZ, USA, on January 11, 2011.

Earlier this year, Braskem inaugurated the largest industrial-scale plant of bio-based ethylene with an annual production capacity of 200,000 tons to be converted into the same volume of Green Polyethylene. Toyota Tsusho will start distribution of Green Polyethylene in Asian countries including Japan after certain shipping time from Brazil to the countries.

Wednesday, November 17, 2010

Nobel Laureates from Manchester University Give Graphene a Teflon Makeover


Professor Andre Geim, who along with his colleague Professor Kostya Novoselov won the 2010 Nobel Prize for graphene - the world's thinnest material, has now modified it to make fluorographene - a one-molecule-thick material chemically similar to Teflon.

Fluorographene is fully-fluorinated graphene and is basically a two-dimensional version of Teflon, showing similar properties including chemical inertness and thermal stability. The results have been reported in the advanced online issue of the journal Small. The work is a large international effort and involved research groups from China, the Netherlands, Poland and Russia.

The team hopes that fluorographene, which is a flat, crystal version of Teflon and is mechanically as strong as graphene, could be used as a thinner, lighter version of Teflon, but could also be in electronics, such as for new types of LED devices.


Graphene, a one-atom-thick material that demonstrates a huge range of unusual and unique properties, has been at the centre of attention since groundbreaking research carried out at The University of Manchester six years ago. Its potential is almost endless - from ultrafast transistors just one atom thick to sensors that can detect just a single molecule of a toxic gas and even to replace carbon fibers in high performance materials that are used to build aircraft.

Professor Geim and his team have exploited a new perspective on graphene by considering it as a gigantic molecule that, like any other molecule, can be modified in chemical reactions. Teflon is a fully-fluorinated chain of carbon atoms. These long molecules bound together make the polymer material that is used in a variety of applications including non-sticky cooking pans.

To get fluorographene, the Manchester researchers first obtained graphene as individual crystals and then fluorinated it by using atomic fluorine. To demonstrate that it is possible to obtain fluorographene in industrial quantities, the researchers also fluorinated graphene powder and obtained fluorographene paper.

Fluorographene turned out to be a high-quality insulator which does not react with other chemicals and can sustain high temperatures even in air. One of the most intense directions in graphene research has been to open a gap in graphene's electronic spectrum, that is, to make a semiconductor out of metallic graphene. This should allow many applications in electronics. Fluorographene is found to be a wide gap semiconductor and is optically transparent for visible light, unlike graphene that is a semimetal.

Professor Geim said: "Electronic quality of fluorographene has to be improved before speaking about applications in electronics but other applications are there up for grabs."

Rahul Nair, who led this research for the last two years and is a PhD student working with Professor Geim, added: "Properties of fluorographene are remarkably similar to those of Teflon but this is not a plastic. "It is essentially a perfect one-molecule-thick crystal and, similar to its parent, fluorographene is also mechanically strong. This makes a big difference for possible applications.

"We plan to use fluorographene as an ultra-thin tunnel barrier for development of light-emitting devices and diodes. "More mundane uses can be everywhere Teflon is currently used, as an ultra-thin protective coating, or as a filler for composite materials if one needs to retain the mechanical strength of graphene but avoid any electrical conductivity or optical opacity of a composite".

Industrial scale production of fluorographene is not seen as a problem as it would involve following the same steps as mass production of graphene.

The Manchester researchers believe that the next important step is to make proof-of-concept devices and demonstrate various applications of fluorographene.

Professor Geim added: "There is no point in using it just as a substitute for Teflon. The mix of the incredible properties of graphene and Teflon is so inviting that you do not need to stretch your imagination to think of applications for the two-dimensional Teflon. The challenge is to exploit this uniqueness."

Tuesday, November 16, 2010

First turnkey CNG truck upfitted with vacuum body


Developed in collaboration with Vac-Con, the Freightliner Business Class M2 112V compressed natural gas unit will also be equipped with a CNG-powered auxiliary-mounted engine that powers the truck’s water system. Vac-Con provides combination sewer cleaners to municipal and private markets throughout the world.

Its combination cleaners combine high-pressure water and vacuum systems to effectively clean both sanitary and storm drainage infrastructure. Vac-Con tapped Freightliner Trucks to develop the CNG truck based on its ability to fulfill its unique specs and need for a turnkey chassis solution.

"There’s a tremendous green movement happening now, and our customers are looking to us to provide efficient products with alternative fuel options," said Tom Jody, marketing manager for Vac-Con. "From the beginning, the team at Freightliner Trucks had a genuine interest in this concept, and in its success.

"
The truck will include an Allison 3000RDS transmission for optimum performance and efficiency, which include patented torque converter technology that results in improved startability at the launch of the vehicle, full power shifts, and a better performing engine. "The CNG project was truly a partnership and we look forward to continuing our work with Freightliner to further refine this and other natural gas products," Jody added. Freightliner Trucks is a division of Daimler Trucks North America LLC, headquartered in Portland, Oregon.

Tuesday, November 9, 2010

Thermoplastic Robot Suit Makes Aged Body Movement Easy

For the healthcare segment, especially for aging population, and additionally for industries for disaster control, Bayer MaterialScience has introduced Robot Suit ® HAL® (Hybrid Assistive Limb®) that gives support to the human motor in the form of an exoskeleton. Japan-based CyberDyne developed and manufactured this suit which was displayed at K 2010 recently. The white plastic housing of the suit is based on Bayblend®, a thermoplastic polymer blend from Bayer. Robot Suit® HAL® is strapped on to human limbs and controlled via a computer that receives bioelectric signals from electrodes attached to the user’s skin. On the event of movement, nerve signals reach muscles, moving the muscoskeletal system consequently. Based on the signals obtained, the power unit moves the joints in synchronization with the limbs.

Carbon-Reinforced Ice Hockey Stick

TeXtreme®, a spread tow carbon fabric used to make ultra-lightweight composites, is incorporated in the body of the ice hockey stick from Bauer. TeXtreme® is fabric from Sweden-based carbon reinforcement developer Oxeon that is used to make Bauer’s new Supreme TotalOne composite ice hockey stick. The stick exhibits improved mechanical performance, and is based on two technologies: Oxeon's Tape Weaving Technology which uses tapes instead of yarn; and Tow Spreading Technology which include spreading a tow into a tape and then using these tapes to weave it into a fabric. Besides lightweight advantage, use of TeXtreme® has also improved the stick’s puck handling and pass-reception properties.

Toyota Tsusho Signs a Bio-ethanol Offtake Agreement with Petrobras to Produce Bio-PET

Toyota Tsusho Corporation (TTC) recently concluded a long-term bio-ethanol offtake agreement with Petroleo Brasileiro S.A. (Petrobras), Brazilian national oil company.

Brazilian sugarcane ethanol will be used as feedstock in a chemical ethanol project that TTC is deploying with a local partner in Taiwan to produce Bio-PET. TTC agrees to procure sugar cane based bio-ethanol of approximately 1.4 million cubic meters for 10 years from 2012 and the contract is approximately 70 billion yen. This contracted bio-ethanol is supplied to TTC's bio PET business in Taiwan. This agreement will make establish the first global bio-PET integrated supply chain including, procurement of bio-ethanol, production of bio-mono ethylene glycol, tolling business of PET, and marketing of bio-PET.

Petrobras foresees investment in the order of 18 trillion yen in the 2010-2014 business plan. Petrobras has affirmative strategy not only conventional oil and gas projects but also renewable energy including bio-fuel. This long-term offtake agreement is one of the actions to realize their strategy in the bio-fuel business.

This is also first major agreement for Petrobras. And it would establish bio-ethanol supply chain between Brazil and Asia. This agreement will strength partnership with Petrobras. TTC accelerate to expand renewable energy business and continue to strength bio-ethanol supply chain which contributes to lower-carbon society.

WORKPLACE FLOOR MARKINGS : Simple Lines. Clear Rules. Fewer Incidents.

  WORKPLACE FLOOR MARKINGS Simple Lines. Clear Rules. Fewer Incidents. Clear floor markings are a visual management tool that improves safet...