Thursday, November 23, 2017

Creation of Mussel-based Adhesive from Intestinal Bacteria

UniCat scientists have reprogrammed strains of the intestinal bacteria Escherichia Coli in such a way, that the biological underwater adhesive of mussels can be created with help of the bacteria. The special feature of the new biogenic super glue is that its adhesive properties can be switched on by irradiation with light. This results in long-awaited possibilities for bonding broken bones or teeth that can be fused together again through this bio-adhesive. These findings will be applied in a spin-off.

Biological Adhesive Proteins

  • Regenerative medicine urgently needs powerful adhesives that are biocompatible – well tolerated by the organism in which they are to be used.
  • Such adhesives could treat superficial wounds, and could replace plates and screws which are commonly used to treat bone fractures.
  • Biological adhesive proteins could not only allow the bonding of bone fragments, but also the fusion of the bone itself.
Biotechnological Process:
  • The UniCat members Prof. Dr. Nediljko Budisa from the TU Berlin, Prof. Dr. Holger Dobbek from the HU Berlin and Prof. Dr. Andreas Möglich, now at the University of Bayreuth, have discovered a biotechnological process, through which the biological underwater adhesive of mussels can be produced.
  • Mussels mainly live in the tidal and shelf areas of the oceans. There, they must withstand strong currents and salt water. Mussels use a super adhesive to be able to hold on to the seabed. Even in low tides, when mussel beds are no longer covered by water, the adhesive still has to work.
  • Using this adhesive, the living mussels can adhere to almost any surface. The mussel releases threads from its foot, consisting of a protein glue. The most important component of this protein glue is the amino acid 3,4-dihydroxy-phenylalanine, known as "DOPA."

How do scientists produce this super adhesive?

Nediljko Budisa:
"To create these mussel proteins, we use intestinal bacteria, which we reprogrammed. They are like our chemical factory through which we produce the super glue."
For this purpose, a special enzyme, that is obtained from the bacterium Methanocaldococcus jannaschii, was altered by the researchers and introduced into Escherichia coli. Subsequently, the modified intestinal bacteria are fed with the amino acid ONB-DOPA (ortho-nitrobenzyl DOPA). Within the ONB-DOPA molecule, the dihydroxyphenyl groups that are responsible for the strong adhesion, are protected. This is similar to a sticker that has its self-adhesive surface covered by a protective film.
The reprogrammed bacterium now builds these amino acids ‘wrapped in protective film’ into proteins, and a bonding protein is obtained, whose adhesive sites are still protected. It is only after the protected adhesive protein has been separated from the bacteria and purified, that the protective groups are removed by means of light of a specific wavelength (365 nm). Through this, the adhesive protein loses its – figuratively spoken – protective film. Its adhesive points are activated and the protein can be targetedly used as a glue.

From research to market - Spin-off planned

The production or enrichment of Mussel Adhesion Proteins (MAPs) had not yet been satisfactorily resolved: the isolation of these organic glues from mussels and other natural sources is inefficient and expensive. Thus, only 1 to 2 grams of this super adhesive can be obtained from 10,000 mussels. Furthermore, the glue-protein from mussels cannot be obtained homogeneously; that is, each batch is different. An additional disadvantage is that the adhesive protein of the mussel must be used almost immediately due to its good adhesive properties. This new procedure from the UniCat scientists can lead to considerable improvements: an increased yield, the avoidance of animal suffering, and a more homogeneous product with adhesive properties that can be switched on.
Two scientists from Budisa’s working group are planning to establish a spin-off based on this idea that is both environmentally friendly and useful for humanity. "This strategy offers new ways to produce DOPA-based wet adhesives for use in industry and biomedicine with the potential to revolutionize bone surgery and wound healing," assert Christian Schipp and Dr. Matthias Hauf. In order to bring their business idea to life, they plan to use the Inkulab, the spin-off laboratory of the Excellence Cluster UniCat at the TU Berlin, and participate in its incubation program.
Prof. Reinhard Schomäcker, who initiated the start-up Inkulab is delighted: "Precisely for innovative ideas such as this, we founded Inkulab together with the Berlin economy. The science and business hub Berlin is greatly enriched by founding such companies. Germany benefits from this entrepreneurial spirit."

Mussel Proteins:
The strong adhesive properties of these organic glues are due to the presence of 1,2-dihydroxyphenyl groups in the side chain of the amino acid L-3,4-dihydroxyphenylalanine (L-DOPA). L-DOPA is a non-proteinogenic amino acid. Thus, it is not one of the 21 amino acids used as building blocks for the formation of proteins in living cells. L-Dopa is produced by hydroxylation of the proteinogenic amino acid tyrosine (post-translational production) and is particularly well suited for surface adhesion.
The research work on photoactivatable mussel-based underwater detachment proteins is a collaborative effort between three UniCat working groups, and has been published in the journal ChemBioChem.

Source: UniCat

Monday, October 9, 2017

POLYOLEFINS: Advances in Technology/Product Developments, DEC 15, Fort Lauderdale, FL, USA; Discount Ends NOV 17

Although radical innovations are getting harder in a maturing chemicals / plastics industry, there is always a continuous need for incremental improvements. Demands from the marketplace and customers dictate that the New/Improved products be developed to deliver high-performance and in-time. Although polyolefins date as back as 1930’s, new products & processes have continued to emerge. This crash-course is designed to deliver the following:
·        An executive overview of the Polyolefins field
·        How to avoid the pitfalls in developing successful products @ High-Speed
·        Emerging Additives that enable the products customers are looking for
..................................................................................................
Click the link below for TESTIMONIALS and BROCHURE:
http://innoplastsolutions.com/courses/polyolefins-latest-products-technology.html
……………………………………………………………………………………………
Upcoming Events: 2018

  1. Polymer/BioPlastic Failure & Defects: $MM Problem Solving Case-Histories, Amsterdam, April 25-26, 2018
  2.  Plastics Tomorrow via Biobased Chemicals & Recycling, New York City area, JUNE 25-28, 2018

Wednesday, October 4, 2017

3D Printed Models Used to Train Surgeons & Reduce Surgery Time

A team of engineers and pediatric orthopedic surgeons are using 3D printing to help train surgeons and shorten surgeries for the most common hip disorder found in children ages 9 to 16.


Shortening Surgery Times

In a recent study, researchers showed that allowing surgeons to prep on a 3D printed model of the patient’s hip joint cut by about 25 percent the amount of time needed for surgery when compared to a control group.
The team, which includes bioengineers from the University of California San Diego and physicians from Rady Children’s Hospital, detailed their findings in a recent issue of the Journal of Children’s Orthopedics.

Dr. Vidyadhar Upasani, pediatric orthopedic surgeon at Rady Children’s and UC San Diego and the paper’s senior author, said:
“Being able to practice on these 3D models is crucial.”

In this study, Upasani operated on a total of 10 patients. For five of the patients, he planned the surgeries using 3D printed models. He didn’t use models to plan the other five. In addition, two other surgeons operated on a different group of five patients without using models. In the group where Upasani used 3D printed models, surgeries were 38-45 minutes shorter compared with the two control groups. These time savings would translate into at least $2700 in savings per surgery, researchers said. By contrast, after the one-time cost of buying a 3D printer for about $2200, physicians can make a model for each surgery for about $10.

The results of the study were so positive that Rady Children’s orthopedics department has acquired its own 3D printer, Upasani said. “I’ve seen how beneficial 3D models are,” he said. “It’s now hard to plan surgeries without them.”

Slipped capital femoral epiphysis is a condition that affects about 11 in 100,000 children in the United States every year.

In this condition, the head of the patient’s femur slips along the bone’s growth plate, deforming it. The main goal of the surgery is to sculpt the femur back into its normal shape and restore hip function. This is difficult because during the surgery, the bone and its growth plate are not directly visible. So the surgeons can’t visualize in 3D how the growth plate is deformed. The condition is associated with obesity and hormonal dysfunction and has become more common as obesity increases among young people.

Traditionally, before the surgery, physicians study X-rays of the surgery site taken from different angles, which they use to plan the bone cuts. During surgery, an X-ray fluoroscopy beam also shines periodically on the surgery site to help guide the physician. These methods are time consuming and expose the child to radiation. In addition, physicians don’t have a physical model to educate patients or practice the surgery beforehand.


How the 3D Printed Models Were Made


In this study, two UC San Diego students, Jason Caffrey, pursuing a Ph.D. in bioengineering, and Lillia Cherkasskiy, pursuing an M.D. and conducting her Independent Studies Project, teamed up with Upasani, bioengineering professor Robert Sah, and their colleagues. They used commercially available software to process CT scans of the patients’ pelvis and create a computerized model of bone and growth plate for 3D printing. The models allowed surgeons to practice and visualize the surgery before they operated in the real world.

One of the biggest obstacles was getting the right texture for the 3D prints, so that they mimic bone. If the texture was too thick, the model would melt under the surgeon’s tools; if too thin, it would break. The engineers finally settled on a honeycomb-like structure to mimic bones for their models. The printing process itself took four to 10 hours for each print.

The 3D printing effort was led by Caffrey, in the lab of professor Sah at the Jacobs School of Engineering at UC San Diego. The inspiration and foundations for the study came from BENG 1, a hands-on engineering class that Sah, among the world leaders in tissue engineering and cartilage repair, co-taught in 2015 and Caffrey helped set up. Students’ 3D printed models of complex ankle bone fractures from CT scans of UC San Diego patients. BENG 1 continues to be a part of the “Experience Engineering” initiative introduced by Albert P. Pisano, dean of the Jacobs School of Engineering at UC San Diego.

Caffrey is now working on his medical degree at the UC San Diego School of Medicine. He is still collaborating with Upasani at Rady Children’s to use 3D printed models to evaluate the best way to surgically correct hip dysplasia, a developmental deformation or misalignment of the hip joint found in infants.


Source: University of California San Diego

Sunday, October 1, 2017

Polyolefins: Latest on Technology/Product Developments, DEC 15, Fort Lauderdale, Florida, USA


 Although radical innovations are getting harder in a maturing chemicals / plastics industry, there is always a continuous need for incremental improvements. Demands from the marketplace and customers dictate that the New/Improved products be developed to deliver high-performance and in-time. Although polyolefins date as back as 1930’s, new products & processes have continued to emerge. This crash-course is designed to deliver the following:

· An executive overview of the Polyolefins field

· How to avoid the pitfalls in developing successful products @ High-Speed

· Emerging Additives that enable the products customers are looking for

...................................................................................................................................

Click the link below for TESTIMONIALS and BROCHURE: http://innoplastsolutions.com/courses/polyolefins-latest-products-technology.html

Upcoming Events: 2018

Polymer/BioPlastic Failure & Defects: $MM Problem Solving Case-Histories, Amsterdam, April 25-26, 2018

Plastics Tomorrow via Biobased Chemicals & Recycling, New York City area, JUNE 25-28, 2018

Wednesday, September 13, 2017

Free Webinar:Take your studies to the next step with a Ecology and Population Genetics Master´s in Finland

This programme will provide you with wide knowledge in ecology and population genetics of plant, animal and fungal species, with emphasis on endangered species and ecosystems. Register https://goo.gl/dJGNQ6

Duration: 1 hour
The University of Oulu in Northern Finland is an international, multidisciplinary research university with a rich pool of creative and intellectual talent. More specifically, the University of Oulu encompasses a science university, a technical university and a business school in the same organization.

The Oulu Region is recognized as a world-class R&D hub with R&D input per capita among the highest globally. Already some 2.3 billion people use ICT solutions designed in Oulu on a daily basis.
In this webinar you’ll learn more about natural science studies and biodiversity and conservation biology in particular. Ecology and Population Genetics programme prepares students for future leadership positions in conservation biology and environmental ecology. The programme provides the students with wide knowledge in ecology and population genetics of plant, animal and fungal species, with emphasis on endangered species and ecosystems.
Join this webinar to learn more from our dedicated staff and students!

Register https://goo.gl/dJGNQ6

Monday, September 11, 2017

Evonik to Acquire J M. Huber’s Silica Business

Evonik will complete the acquisition of US company J.M. Huber Corporation’s silica business for US$ 630 million, as planned, in the second half of the year. The transaction closed on September 1, 2017 after approval by the relevant authorities. Contributions from the new business will therefore be included in Evonik’s sales and earnings as of this date.

Expand Position in the Silica Business

Christian Kullmann, Chairman of the Executive Board of Evonik, said: “With the successful closing of the acquisition, we are strengthening our ‘Smart Materials’ growth engine by continuing to expand our globally leading position in the silica business.”
The newly acquired business will be integrated into the Resource Efficiency Segment. The intensive planning work that has been done for the integration over the past few months will be put into action straight away.

The acquisition is a perfect match for Evonik’s product portfolio. Huber Silica is especially oriented towards applications in the consumer goods industry, the dental sector for example. To date, Evonik’s silica business has been more focused on industrial applications, for example in the tire and coatings industries.


Source: Evonik 

Daikin Agrees to Acquire Heroflon for Fluoropolymers Business Expansion

Daikin has recently agreed to acquire Heroflon S.p.A., an Italian manufacturer of fluoropolymer compounds. Daikin will obtain all company shares owned by the Heroflon Executive Officers with finalization of the acquisition planned for the end of October 2017 after completion of all necessary procedures.

Heroflon is a compound manufacturer that produces high-performance fluoropolymers by combining various materials. Its product lineup includes fluoropolymer compounds and micro-powders centering on polytetrafluoroethylene (PTFE).

PTFE is a highly functional and high value-added fluoropolymer used in a wide range of fields including:

  • Automotive
  • Construction
  • Electrical power
  • Chemical industries

Accelerating Product Development


Daikin supplies various kinds of fluoropolymers such as PTFE to processing companies including compounders. With this acquisition, Daikin fully enters the compound business for fluoropolymers and will utilize its global network to expand sales of Heroflon's fluoropolymer compounds and micro-powders.

The company also expects this acquisition to further strengthen its relationship with European car manufacturers together with sales expansion of fluoroelastomers and Automotive air conditioning refrigerant. By accelerating product development that meets customer needs, Daikin expects to realize sales expansion of fluorinated materials for automobiles.

Increase Global Sales of Fluoropolymers


Moreover, with the automotive parts market shifting toward fluoropolymers to reduce weight, promote miniaturization, and lower fuel consumption, Daikin aims to increase global sales of fluoropolymers and fluoroelastomers to 100 billion yen in 2020 by developing products corresponding to a greater need for functional enhancement, such as in heat and wear resistance, and providing technical services.

Source: Daikin